Spaces:
Running
Running
# cp from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py, modified by Puyuan Peng 2024 | |
import copy | |
import numbers | |
from functools import partial | |
from typing import Any, Callable, List, Optional, Tuple, Union | |
import torch | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from .activation import MultiheadAttention | |
from .scaling import ActivationBalancer, BalancedDoubleSwish | |
from .scaling import BasicNorm as _BasicNorm | |
_shape_t = Union[int, List[int], torch.Size] | |
class LayerNorm(nn.Module): | |
__constants__ = ["normalized_shape", "eps", "elementwise_affine"] | |
normalized_shape: Tuple[int, ...] | |
eps: float | |
elementwise_affine: bool | |
def __init__( | |
self, | |
normalized_shape: _shape_t, | |
eps: float = 1e-5, | |
elementwise_affine: bool = True, | |
device=None, | |
dtype=None, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(LayerNorm, self).__init__() | |
if isinstance(normalized_shape, numbers.Integral): | |
# mypy error: incompatible types in assignment | |
normalized_shape = (normalized_shape,) # type: ignore[assignment] | |
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if self.elementwise_affine: | |
self.weight = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
self.bias = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
else: | |
self.register_parameter("weight", None) | |
self.register_parameter("bias", None) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
if self.elementwise_affine: | |
nn.init.ones_(self.weight) | |
nn.init.zeros_(self.bias) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return ( | |
F.layer_norm( | |
input, | |
self.normalized_shape, | |
self.weight, | |
self.bias, | |
self.eps, | |
), | |
embedding, | |
) | |
assert embedding is None | |
return F.layer_norm( | |
input, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
def extra_repr(self) -> str: | |
return ( | |
"{normalized_shape}, eps={eps}, " | |
"elementwise_affine={elementwise_affine}".format(**self.__dict__) | |
) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.project_layer = nn.Linear(d_model, 2 * d_model) | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return (weight * self.norm(input) + bias, embedding) | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return weight * self.norm(input) + bias | |
class BasicNorm(_BasicNorm): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
): | |
super(BasicNorm, self).__init__(d_model, eps=eps) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return ( | |
super(BasicNorm, self).forward(input), | |
embedding, | |
) | |
assert embedding is None | |
return super(BasicNorm, self).forward(input) | |
class BalancedBasicNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
): | |
super(BalancedBasicNorm, self).__init__() | |
self.balancer = ActivationBalancer( | |
d_model, | |
channel_dim=-1, | |
min_positive=0.45, | |
max_positive=0.55, | |
max_abs=6.0, | |
) | |
self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return self.norm((self.balancer(input), embedding)) | |
assert embedding is None | |
return self.norm(self.balancer(input)) | |
class IdentityNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
) -> None: | |
super(IdentityNorm, self).__init__() | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
return input | |
assert embedding is None | |
return input | |
class TransformerEncoderLayer(nn.Module): | |
__constants__ = ["batch_first", "norm_first"] | |
def __init__( | |
self, | |
d_model: int, | |
nhead: int, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
batch_first: bool = False, | |
norm_first: bool = False, | |
device=None, | |
dtype=None, | |
linear1_self_attention_cls: nn.Module = nn.Linear, | |
linear2_self_attention_cls: nn.Module = nn.Linear, | |
linear1_feedforward_cls: nn.Module = nn.Linear, | |
linear2_feedforward_cls: nn.Module = nn.Linear, | |
layer_norm_cls: nn.Module = LayerNorm, | |
layer_norm_eps: float = 1e-5, | |
adaptive_layer_norm=False, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(TransformerEncoderLayer, self).__init__() | |
self.self_attn = MultiheadAttention( | |
d_model, | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
# Implementation of Feedforward model | |
self.linear1 = linear1_feedforward_cls( | |
d_model, dim_feedforward, **factory_kwargs | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = linear2_feedforward_cls( | |
dim_feedforward, d_model, **factory_kwargs | |
) | |
self.norm_first = norm_first | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
# Legacy string support for activation function. | |
if isinstance(activation, str): | |
activation = _get_activation_fn(activation) | |
elif isinstance(activation, partial): | |
activation = activation(d_model) | |
elif activation == BalancedDoubleSwish: | |
activation = BalancedDoubleSwish(d_model) | |
# # We can't test self.activation in forward() in TorchScript, | |
# # so stash some information about it instead. | |
# if activation is F.relu or isinstance(activation, torch.nn.ReLU): | |
# self.activation_relu_or_gelu = 1 | |
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU): | |
# self.activation_relu_or_gelu = 2 | |
# else: | |
# self.activation_relu_or_gelu = 0 | |
self.activation = activation | |
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
if layer_norm_cls == IdentityNorm: | |
norm2 = BalancedBasicNorm( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
else: | |
norm2 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
if adaptive_layer_norm: | |
self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
else: | |
self.norm1 = norm1 | |
self.norm2 = norm2 | |
def __setstate__(self, state): | |
super(TransformerEncoderLayer, self).__setstate__(state) | |
if not hasattr(self, "activation"): | |
self.activation = F.relu | |
def forward( | |
self, | |
src: Tensor, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
need_weights: Optional[bool] = False, | |
past: Optional[Tensor] = None, | |
) -> Tensor: | |
r"""Pass the input through the encoder layer. | |
Args: | |
src: the sequence to the encoder layer (required). | |
src_mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
x, stage_embedding = src, None | |
is_src_tuple = False | |
if isinstance(src, tuple): | |
x, stage_embedding = src | |
is_src_tuple = True | |
if src_key_padding_mask is not None: | |
_skpm_dtype = src_key_padding_mask.dtype | |
if _skpm_dtype != torch.bool and not torch.is_floating_point( | |
src_key_padding_mask | |
): | |
raise AssertionError( | |
"only bool and floating types of key_padding_mask are supported" | |
) | |
if need_weights: | |
if self.norm_first: | |
out, attn = self._sa_block_attn( | |
self.norm1(x, stage_embedding), | |
src_mask, | |
src_key_padding_mask, | |
past | |
) | |
out, present = out # present is the kvcache of the present timestep | |
x = x + out | |
x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
else: | |
out, attn = self._sa_block_attn(x, src_mask, src_key_padding_mask, past) | |
out, present = out # present is the kvcache of the present timestep | |
x = self.norm1( | |
x + out, | |
stage_embedding, | |
) | |
x = self.norm2(x + self._ff_block(x), stage_embedding) | |
assert not is_src_tuple | |
# return (x, stage_embedding) | |
return (x, attn) | |
else: | |
if self.norm_first: | |
out = self._sa_block( | |
self.norm1(x, stage_embedding), | |
src_mask, | |
src_key_padding_mask, past | |
) | |
out, present = out # present is the kvcache of the present timestep | |
x = x + out | |
x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
else: | |
out = self._sa_block(x, src_mask, src_key_padding_mask) | |
out, present = out # present is the kvcache of the present timestep | |
x = self.norm1( | |
x + out, | |
stage_embedding, past | |
) | |
x = self.norm2(x + self._ff_block(x), stage_embedding) | |
if is_src_tuple: | |
x = (x, stage_embedding) | |
if present != None: | |
x = [x, present] | |
return x | |
# self-attention block | |
def _sa_block( | |
self, | |
x: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
past: Optional[Tensor] = None, | |
) -> Tensor: | |
x = self.self_attn( | |
x, | |
x, | |
x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
past=past | |
) | |
x, present = x | |
return self.dropout1(x), present | |
# self-attention block, also return attention weights | |
def _sa_block_attn( | |
self, | |
x: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
past: Optional[Tensor] = None, | |
) -> Tensor: | |
x, attn = self.self_attn( | |
x, | |
x, | |
x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=True, | |
past=past | |
) | |
x, present = x | |
return (self.dropout1(x), present), attn | |
# feed forward block | |
def _ff_block(self, x: Tensor) -> Tensor: | |
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
return self.dropout2(x) | |
class TransformerEncoder(nn.Module): | |
r"""TransformerEncoder is a stack of N encoder layers. Users can build the | |
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. | |
Args: | |
encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
num_layers: the number of sub-encoder-layers in the encoder (required). | |
norm: the layer normalization component (optional). | |
enable_nested_tensor: if True, input will automatically convert to nested tensor | |
(and convert back on output). This will improve the overall performance of | |
TransformerEncoder when padding rate is high. Default: ``True`` (enabled). | |
Examples:: | |
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) | |
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) | |
>>> src = torch.rand(10, 32, 512) | |
>>> out = transformer_encoder(src) | |
""" | |
__constants__ = ["norm"] | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super(TransformerEncoder, self).__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward( | |
self, | |
src: Tensor, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
return_layer_states: bool = False, | |
need_weights:Optional[bool] = False, | |
past: Optional[Tensor] = None, | |
) -> Tensor: | |
r"""Pass the input through the encoder layers in turn. | |
Args: | |
src: the sequence to the encoder (required). | |
mask: the mask for the src sequence (optional). | |
src_key_padding_mask: the mask for the src keys per batch (optional). | |
return_layer_states: return layers' state (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
if return_layer_states: | |
assert not need_weights | |
layer_states = [] # layers' output | |
output = src | |
for mod in self.layers: | |
output = mod( | |
output, | |
src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, | |
past=past | |
) | |
layer_states.append(output[0]) | |
if self.norm is not None: | |
output = self.norm(output) | |
return layer_states, output | |
if need_weights: | |
assert not return_layer_states | |
layer_attn = [] # layers' output | |
output = src | |
for mod in self.layers: | |
output = mod( | |
output, | |
src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, | |
need_weights=True, | |
past=past | |
) | |
layer_attn.append(output[1]) | |
if self.norm is not None: | |
output = self.norm(output) | |
return layer_attn, output | |
output = src | |
all_present = [] | |
for n_layer, mod in enumerate(self.layers): | |
output = mod( | |
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, past=None if past is None else past[n_layer] | |
) | |
if isinstance(output, list): | |
output, present = output | |
all_present.append(present) | |
if self.norm is not None: | |
output = self.norm(output) | |
if all_present != []: | |
all_present = torch.stack(all_present, dim=0) # (num_layers, 2, batch_size, num_heads, seq_len, head_dim) | |
output = [output, all_present] | |
return output | |
class TransformerDecoderLayer(nn.Module): | |
__constants__ = ["batch_first", "norm_first"] | |
def __init__( | |
self, | |
d_model: int, | |
nhead: int, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
linear1_self_attention_cls: nn.Module = nn.Linear, | |
linear2_self_attention_cls: nn.Module = nn.Linear, | |
linear1_feedforward_cls: nn.Module = nn.Linear, | |
linear2_feedforward_cls: nn.Module = nn.Linear, | |
batch_first: bool = False, | |
norm_first: bool = False, | |
device=None, | |
dtype=None, | |
layer_norm_cls: nn.Module = LayerNorm, | |
layer_norm_eps: float = 1e-5, | |
adaptive_layer_norm=False, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(TransformerDecoderLayer, self).__init__() | |
self.self_attn = MultiheadAttention( | |
d_model, | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
self.multihead_attn = MultiheadAttention( | |
d_model, | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
# Implementation of Feedforward model | |
self.linear1 = linear1_feedforward_cls( | |
d_model, dim_feedforward, **factory_kwargs | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = linear2_feedforward_cls( | |
dim_feedforward, d_model, **factory_kwargs | |
) | |
self.norm_first = norm_first | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
# Legacy string support for activation function. | |
if isinstance(activation, str): | |
self.activation = _get_activation_fn(activation) | |
elif isinstance(activation, partial): | |
self.activation = activation(d_model) | |
elif activation == BalancedDoubleSwish: | |
self.activation = BalancedDoubleSwish(d_model) | |
else: | |
self.activation = activation | |
if adaptive_layer_norm: | |
norm1 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
norm2 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
norm3 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
self.norm3 = AdaptiveLayerNorm(d_model, norm3) | |
else: | |
self.norm1 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
self.norm2 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
if layer_norm_cls == IdentityNorm: | |
self.norm3 = BalancedBasicNorm( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
else: | |
self.norm3 = layer_norm_cls( | |
d_model, eps=layer_norm_eps, **factory_kwargs | |
) | |
def forward( | |
self, | |
tgt: Tensor, | |
memory: Tensor, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
) -> Tensor: | |
r"""Pass the inputs (and mask) through the decoder layer. | |
Args: | |
tgt: the sequence to the decoder layer (required). | |
memory: the sequence from the last layer of the encoder (required). | |
tgt_mask: the mask for the tgt sequence (optional). | |
memory_mask: the mask for the memory sequence (optional). | |
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
tgt_is_tuple = False | |
if isinstance(tgt, tuple): | |
x, stage_embedding = tgt | |
tgt_is_tuple = True | |
else: | |
x, stage_embedding = tgt, None | |
if self.norm_first: | |
x = x + self._sa_block( | |
self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask | |
) | |
x = x + self._mha_block( | |
self.norm2(x, stage_embedding), | |
memory, | |
memory_mask, | |
memory_key_padding_mask, | |
) | |
x = x + self._ff_block(self.norm3(x, stage_embedding)) | |
else: | |
x = self.norm1( | |
x + self._sa_block(x, tgt_mask, tgt_key_padding_mask), | |
stage_embedding, | |
) | |
x = self.norm2( | |
x | |
+ self._mha_block( | |
x, memory, memory_mask, memory_key_padding_mask | |
), | |
stage_embedding, | |
) | |
x = self.norm3(x + self._ff_block(x), stage_embedding) | |
if tgt_is_tuple: | |
return (x, stage_embedding) | |
return x | |
# self-attention block | |
def _sa_block( | |
self, | |
x: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
) -> Tensor: | |
x = self.self_attn( | |
x, | |
x, | |
x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
)[0] | |
return self.dropout1(x) | |
# multihead attention block | |
def _mha_block( | |
self, | |
x: Tensor, | |
mem: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
) -> Tensor: | |
x = self.multihead_attn( | |
x, | |
mem, | |
mem, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
)[0] | |
return self.dropout2(x) | |
# feed forward block | |
def _ff_block(self, x: Tensor) -> Tensor: | |
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
return self.dropout3(x) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: | |
if activation == "relu": | |
return F.relu | |
elif activation == "gelu": | |
return F.gelu | |
raise RuntimeError( | |
"activation should be relu/gelu, not {}".format(activation) | |
) |