|
import torch |
|
import torchaudio |
|
|
|
|
|
def read_audio(path): |
|
wav, sr = torchaudio.load(path) |
|
|
|
if wav.size(0) > 1: |
|
wav = wav.mean(dim=0, keepdim=True) |
|
|
|
return wav.squeeze(0), sr |
|
|
|
|
|
def resample_wav(wav, sr, new_sr): |
|
wav = wav.unsqueeze(0) |
|
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=new_sr) |
|
wav = transform(wav) |
|
return wav.squeeze(0) |
|
|
|
|
|
def map_timestamps_to_new_sr(vad_sr, new_sr, timestamps, just_begging_end=False): |
|
factor = new_sr / vad_sr |
|
new_timestamps = [] |
|
if just_begging_end and timestamps: |
|
|
|
new_dict = {"start": int(timestamps[0]["start"] * factor), "end": int(timestamps[-1]["end"] * factor)} |
|
new_timestamps.append(new_dict) |
|
else: |
|
for ts in timestamps: |
|
|
|
new_dict = {"start": int(ts["start"] * factor), "end": int(ts["end"] * factor)} |
|
new_timestamps.append(new_dict) |
|
|
|
return new_timestamps |
|
|
|
|
|
def get_vad_model_and_utils(use_cuda=False, use_onnx=False): |
|
model, utils = torch.hub.load( |
|
repo_or_dir="snakers4/silero-vad", model="silero_vad", force_reload=True, onnx=use_onnx, force_onnx_cpu=True |
|
) |
|
if use_cuda: |
|
model = model.cuda() |
|
|
|
get_speech_timestamps, save_audio, _, _, collect_chunks = utils |
|
return model, get_speech_timestamps, save_audio, collect_chunks |
|
|
|
|
|
def remove_silence( |
|
model_and_utils, audio_path, out_path, vad_sample_rate=8000, trim_just_beginning_and_end=True, use_cuda=False |
|
): |
|
|
|
model, get_speech_timestamps, _, collect_chunks = model_and_utils |
|
|
|
|
|
try: |
|
wav, gt_sample_rate = read_audio(audio_path) |
|
except: |
|
print(f"> ❗ Failed to read {audio_path}") |
|
return None, False |
|
|
|
|
|
if gt_sample_rate != vad_sample_rate: |
|
wav_vad = resample_wav(wav, gt_sample_rate, vad_sample_rate) |
|
else: |
|
wav_vad = wav |
|
|
|
if use_cuda: |
|
wav_vad = wav_vad.cuda() |
|
|
|
|
|
speech_timestamps = get_speech_timestamps(wav_vad, model, sampling_rate=vad_sample_rate, window_size_samples=768) |
|
|
|
|
|
new_speech_timestamps = map_timestamps_to_new_sr( |
|
vad_sample_rate, gt_sample_rate, speech_timestamps, trim_just_beginning_and_end |
|
) |
|
|
|
|
|
if new_speech_timestamps: |
|
wav = collect_chunks(new_speech_timestamps, wav) |
|
is_speech = True |
|
else: |
|
print(f"> The file {audio_path} probably does not have speech please check it !!") |
|
is_speech = False |
|
|
|
|
|
torchaudio.save(out_path, wav[None, :], gt_sample_rate) |
|
return out_path, is_speech |
|
|