|
"""Search a good noise schedule for WaveGrad for a given number of inference iterations""" |
|
import argparse |
|
from itertools import product as cartesian_product |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.vocoder.datasets.preprocess import load_wav_data |
|
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset |
|
from TTS.vocoder.models import setup_model |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_path", type=str, help="Path to model checkpoint.") |
|
parser.add_argument("--config_path", type=str, help="Path to model config file.") |
|
parser.add_argument("--data_path", type=str, help="Path to data directory.") |
|
parser.add_argument("--output_path", type=str, help="path for output file including file name and extension.") |
|
parser.add_argument( |
|
"--num_iter", |
|
type=int, |
|
help="Number of model inference iterations that you like to optimize noise schedule for.", |
|
) |
|
parser.add_argument("--use_cuda", action="store_true", help="enable CUDA.") |
|
parser.add_argument("--num_samples", type=int, default=1, help="Number of datasamples used for inference.") |
|
parser.add_argument( |
|
"--search_depth", |
|
type=int, |
|
default=3, |
|
help="Search granularity. Increasing this increases the run-time exponentially.", |
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
config = load_config(args.config_path) |
|
|
|
|
|
ap = AudioProcessor(**config.audio) |
|
|
|
|
|
_, train_data = load_wav_data(args.data_path, 0) |
|
train_data = train_data[: args.num_samples] |
|
dataset = WaveGradDataset( |
|
ap=ap, |
|
items=train_data, |
|
seq_len=-1, |
|
hop_len=ap.hop_length, |
|
pad_short=config.pad_short, |
|
conv_pad=config.conv_pad, |
|
is_training=True, |
|
return_segments=False, |
|
use_noise_augment=False, |
|
use_cache=False, |
|
verbose=True, |
|
) |
|
loader = DataLoader( |
|
dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
collate_fn=dataset.collate_full_clips, |
|
drop_last=False, |
|
num_workers=config.num_loader_workers, |
|
pin_memory=False, |
|
) |
|
|
|
|
|
model = setup_model(config) |
|
if args.use_cuda: |
|
model.cuda() |
|
|
|
|
|
base_values = sorted(10 * np.random.uniform(size=args.search_depth)) |
|
print(f" > base values: {base_values}") |
|
exponents = 10 ** np.linspace(-6, -1, num=args.num_iter) |
|
best_error = float("inf") |
|
best_schedule = None |
|
total_search_iter = len(base_values) ** args.num_iter |
|
for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter): |
|
beta = exponents * base |
|
model.compute_noise_level(beta) |
|
for data in loader: |
|
mel, audio = data |
|
y_hat = model.inference(mel.cuda() if args.use_cuda else mel) |
|
|
|
if args.use_cuda: |
|
y_hat = y_hat.cpu() |
|
y_hat = y_hat.numpy() |
|
|
|
mel_hat = [] |
|
for i in range(y_hat.shape[0]): |
|
m = ap.melspectrogram(y_hat[i, 0])[:, :-1] |
|
mel_hat.append(torch.from_numpy(m)) |
|
|
|
mel_hat = torch.stack(mel_hat) |
|
mse = torch.sum((mel - mel_hat) ** 2).mean() |
|
if mse.item() < best_error: |
|
best_error = mse.item() |
|
best_schedule = {"beta": beta} |
|
print(f" > Found a better schedule. - MSE: {mse.item()}") |
|
np.save(args.output_path, best_schedule) |
|
|