KingNish commited on
Commit
8c4611d
1 Parent(s): 331ce58

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import edge_tts
3
+ import asyncio
4
+ import tempfile
5
+ import numpy as np
6
+ import soxr
7
+ from pydub import AudioSegment
8
+ import torch
9
+ import sentencepiece as spm
10
+ import onnxruntime as ort
11
+ from huggingface_hub import hf_hub_download, InferenceClient
12
+
13
+ # Speech Recognition Model Configuration
14
+ model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
15
+ sample_rate = 16000
16
+
17
+ # Download preprocessor, encoder and tokenizer
18
+ preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
19
+ encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
20
+ tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
21
+
22
+ # Mistral Model Configuration
23
+ client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
24
+ system_instructions1 = "<s>[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'Tony Stark.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
25
+
26
+ def resample(audio_fp32, sr):
27
+ return soxr.resample(audio_fp32, sr, sample_rate)
28
+
29
+ def to_float32(audio_buffer):
30
+ return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
31
+
32
+ def transcribe(audio_path):
33
+ audio_file = AudioSegment.from_file(audio_path)
34
+ sr = audio_file.frame_rate
35
+ audio_buffer = np.array(audio_file.get_array_of_samples())
36
+
37
+ audio_fp32 = to_float32(audio_buffer)
38
+ audio_16k = resample(audio_fp32, sr)
39
+
40
+ input_signal = torch.tensor(audio_16k).unsqueeze(0)
41
+ length = torch.tensor(len(audio_16k)).unsqueeze(0)
42
+ processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
43
+
44
+ logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
45
+
46
+ blank_id = tokenizer.vocab_size()
47
+ decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
48
+ text = tokenizer.decode_ids(decoded_prediction)
49
+
50
+ return text
51
+
52
+ def model(text):
53
+ formatted_prompt = system_instructions1 + text + "[JARVIS]"
54
+ stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
55
+ return "".join([response.token.text for response in stream if response.token.text != "</s>"])
56
+
57
+ async def respond(audio):
58
+ user = transcribe(audio)
59
+ reply = model(user)
60
+ communicate = edge_tts.Communicate(reply)
61
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
62
+ tmp_path = tmp_file.name
63
+ await communicate.save(tmp_path)
64
+ return tmp_path
65
+
66
+ with gr.Blocks() as demo:
67
+ with gr.Row():
68
+ input = gr.Audio(label="Voice Chat (BETA)", sources="microphone", type="filepath", waveform_options=False)
69
+ output = gr.Audio(label="JARVIS", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
70
+ gr.Interface(fn=respond, inputs=[input], outputs=[output], live=True)
71
+
72
+ if __name__ == "__main__":
73
+ demo.queue(max_size=200).launch()