|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
|
|
class Attention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): |
|
The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): |
|
The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): |
|
The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
upcast_attention (`bool`, *optional*, defaults to False): |
|
Set to `True` to upcast the attention computation to `float32`. |
|
upcast_softmax (`bool`, *optional*, defaults to False): |
|
Set to `True` to upcast the softmax computation to `float32`. |
|
cross_attention_norm (`str`, *optional*, defaults to `None`): |
|
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. |
|
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use for the group norm in the cross attention. |
|
added_kv_proj_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels to use for the added key and value projections. If `None`, no projection is used. |
|
norm_num_groups (`int`, *optional*, defaults to `None`): |
|
The number of groups to use for the group norm in the attention. |
|
spatial_norm_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels to use for the spatial normalization. |
|
out_bias (`bool`, *optional*, defaults to `True`): |
|
Set to `True` to use a bias in the output linear layer. |
|
scale_qk (`bool`, *optional*, defaults to `True`): |
|
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. |
|
only_cross_attention (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if |
|
`added_kv_proj_dim` is not `None`. |
|
eps (`float`, *optional*, defaults to 1e-5): |
|
An additional value added to the denominator in group normalization that is used for numerical stability. |
|
rescale_output_factor (`float`, *optional*, defaults to 1.0): |
|
A factor to rescale the output by dividing it with this value. |
|
residual_connection (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to add the residual connection to the output. |
|
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): |
|
Set to `True` if the attention block is loaded from a deprecated state dict. |
|
processor (`AttnProcessor`, *optional*, defaults to `None`): |
|
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and |
|
`AttnProcessor` otherwise. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias: bool = False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
cross_attention_norm_num_groups: int = 32, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
out_bias: bool = True, |
|
scale_qk: bool = True, |
|
only_cross_attention: bool = False, |
|
eps: float = 1e-5, |
|
rescale_output_factor: float = 1.0, |
|
residual_connection: bool = False, |
|
_from_deprecated_attn_block: bool = False, |
|
processor: Optional["AttnProcessor"] = None, |
|
out_dim: int = None, |
|
): |
|
super().__init__() |
|
self.inner_dim = out_dim if out_dim is not None else dim_head * heads |
|
self.query_dim = query_dim |
|
self.cross_attention_dim = ( |
|
cross_attention_dim if cross_attention_dim is not None else query_dim |
|
) |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.rescale_output_factor = rescale_output_factor |
|
self.residual_connection = residual_connection |
|
self.dropout = dropout |
|
self.fused_projections = False |
|
self.out_dim = out_dim if out_dim is not None else query_dim |
|
|
|
|
|
|
|
self._from_deprecated_attn_block = _from_deprecated_attn_block |
|
|
|
self.scale_qk = scale_qk |
|
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 |
|
|
|
self.heads = out_dim // dim_head if out_dim is not None else heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
self.only_cross_attention = only_cross_attention |
|
|
|
if self.added_kv_proj_dim is None and self.only_cross_attention: |
|
raise ValueError( |
|
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." |
|
) |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm( |
|
num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True |
|
) |
|
else: |
|
self.group_norm = None |
|
|
|
self.spatial_norm = None |
|
|
|
if cross_attention_norm is None: |
|
self.norm_cross = None |
|
elif cross_attention_norm == "layer_norm": |
|
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) |
|
elif cross_attention_norm == "group_norm": |
|
if self.added_kv_proj_dim is not None: |
|
|
|
|
|
|
|
|
|
|
|
norm_cross_num_channels = added_kv_proj_dim |
|
else: |
|
norm_cross_num_channels = self.cross_attention_dim |
|
|
|
self.norm_cross = nn.GroupNorm( |
|
num_channels=norm_cross_num_channels, |
|
num_groups=cross_attention_norm_num_groups, |
|
eps=1e-5, |
|
affine=True, |
|
) |
|
else: |
|
raise ValueError( |
|
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" |
|
) |
|
|
|
linear_cls = nn.Linear |
|
|
|
self.linear_cls = linear_cls |
|
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) |
|
|
|
if not self.only_cross_attention: |
|
|
|
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) |
|
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) |
|
else: |
|
self.to_k = None |
|
self.to_v = None |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) |
|
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
|
|
|
if processor is None: |
|
processor = ( |
|
AttnProcessor2_0() |
|
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk |
|
else AttnProcessor() |
|
) |
|
self.set_processor(processor) |
|
|
|
def set_processor(self, processor: "AttnProcessor") -> None: |
|
self.processor = processor |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**cross_attention_kwargs, |
|
) -> torch.Tensor: |
|
r""" |
|
The forward method of the `Attention` class. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
The hidden states of the query. |
|
encoder_hidden_states (`torch.Tensor`, *optional*): |
|
The hidden states of the encoder. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention mask to use. If `None`, no mask is applied. |
|
**cross_attention_kwargs: |
|
Additional keyword arguments to pass along to the cross attention. |
|
|
|
Returns: |
|
`torch.Tensor`: The output of the attention layer. |
|
""" |
|
|
|
|
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` |
|
is the number of heads initialized while constructing the `Attention` class. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): The tensor to reshape. |
|
|
|
Returns: |
|
`torch.Tensor`: The reshaped tensor. |
|
""" |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape( |
|
batch_size // head_size, seq_len, dim * head_size |
|
) |
|
return tensor |
|
|
|
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: |
|
r""" |
|
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is |
|
the number of heads initialized while constructing the `Attention` class. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): The tensor to reshape. |
|
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is |
|
reshaped to `[batch_size * heads, seq_len, dim // heads]`. |
|
|
|
Returns: |
|
`torch.Tensor`: The reshaped tensor. |
|
""" |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3) |
|
|
|
if out_dim == 3: |
|
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) |
|
|
|
return tensor |
|
|
|
def get_attention_scores( |
|
self, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
attention_mask: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
r""" |
|
Compute the attention scores. |
|
|
|
Args: |
|
query (`torch.Tensor`): The query tensor. |
|
key (`torch.Tensor`): The key tensor. |
|
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. |
|
|
|
Returns: |
|
`torch.Tensor`: The attention probabilities/scores. |
|
""" |
|
dtype = query.dtype |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], |
|
query.shape[1], |
|
key.shape[1], |
|
dtype=query.dtype, |
|
device=query.device, |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
del baddbmm_input |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
del attention_scores |
|
|
|
attention_probs = attention_probs.to(dtype) |
|
|
|
return attention_probs |
|
|
|
def prepare_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
target_length: int, |
|
batch_size: int, |
|
out_dim: int = 3, |
|
) -> torch.Tensor: |
|
r""" |
|
Prepare the attention mask for the attention computation. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
The attention mask to prepare. |
|
target_length (`int`): |
|
The target length of the attention mask. This is the length of the attention mask after padding. |
|
batch_size (`int`): |
|
The batch size, which is used to repeat the attention mask. |
|
out_dim (`int`, *optional*, defaults to `3`): |
|
The output dimension of the attention mask. Can be either `3` or `4`. |
|
|
|
Returns: |
|
`torch.Tensor`: The prepared attention mask. |
|
""" |
|
head_size = self.heads |
|
if attention_mask is None: |
|
return attention_mask |
|
|
|
current_length: int = attention_mask.shape[-1] |
|
if current_length != target_length: |
|
if attention_mask.device.type == "mps": |
|
|
|
|
|
padding_shape = ( |
|
attention_mask.shape[0], |
|
attention_mask.shape[1], |
|
target_length, |
|
) |
|
padding = torch.zeros( |
|
padding_shape, |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
attention_mask = torch.cat([attention_mask, padding], dim=2) |
|
else: |
|
|
|
|
|
|
|
|
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
|
|
if out_dim == 3: |
|
if attention_mask.shape[0] < batch_size * head_size: |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) |
|
elif out_dim == 4: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) |
|
|
|
return attention_mask |
|
|
|
def norm_encoder_hidden_states( |
|
self, encoder_hidden_states: torch.Tensor |
|
) -> torch.Tensor: |
|
r""" |
|
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the |
|
`Attention` class. |
|
|
|
Args: |
|
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. |
|
|
|
Returns: |
|
`torch.Tensor`: The normalized encoder hidden states. |
|
""" |
|
assert ( |
|
self.norm_cross is not None |
|
), "self.norm_cross must be defined to call self.norm_encoder_hidden_states" |
|
|
|
if isinstance(self.norm_cross, nn.LayerNorm): |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
elif isinstance(self.norm_cross, nn.GroupNorm): |
|
|
|
|
|
|
|
|
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
else: |
|
assert False |
|
|
|
return encoder_hidden_states |
|
|
|
@torch.no_grad() |
|
def fuse_projections(self, fuse=True): |
|
is_cross_attention = self.cross_attention_dim != self.query_dim |
|
device = self.to_q.weight.data.device |
|
dtype = self.to_q.weight.data.dtype |
|
|
|
if not is_cross_attention: |
|
|
|
concatenated_weights = torch.cat( |
|
[self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data] |
|
) |
|
in_features = concatenated_weights.shape[1] |
|
out_features = concatenated_weights.shape[0] |
|
|
|
|
|
self.to_qkv = self.linear_cls( |
|
in_features, out_features, bias=False, device=device, dtype=dtype |
|
) |
|
self.to_qkv.weight.copy_(concatenated_weights) |
|
|
|
else: |
|
concatenated_weights = torch.cat( |
|
[self.to_k.weight.data, self.to_v.weight.data] |
|
) |
|
in_features = concatenated_weights.shape[1] |
|
out_features = concatenated_weights.shape[0] |
|
|
|
self.to_kv = self.linear_cls( |
|
in_features, out_features, bias=False, device=device, dtype=dtype |
|
) |
|
self.to_kv.weight.copy_(concatenated_weights) |
|
|
|
self.fused_projections = fuse |
|
|
|
|
|
class AttnProcessor: |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.Tensor: |
|
residual = hidden_states |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view( |
|
batch_size, channel, height * width |
|
).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask( |
|
attention_mask, sequence_length, batch_size |
|
) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states( |
|
encoder_hidden_states |
|
) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
batch_size, channel, height, width |
|
) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError( |
|
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
) |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view( |
|
batch_size, channel, height * width |
|
).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape |
|
if encoder_hidden_states is None |
|
else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask( |
|
attention_mask, sequence_length, batch_size |
|
) |
|
|
|
|
|
attention_mask = attention_mask.view( |
|
batch_size, attn.heads, -1, attention_mask.shape[-1] |
|
) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states( |
|
encoder_hidden_states |
|
) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
batch_size, -1, attn.heads * head_dim |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
batch_size, channel, height, width |
|
) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|