|
import numpy as np |
|
|
|
PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53] |
|
|
|
def radical_inverse(base, n): |
|
val = 0 |
|
inv_base = 1.0 / base |
|
inv_base_n = inv_base |
|
while n > 0: |
|
digit = n % base |
|
val += digit * inv_base_n |
|
n //= base |
|
inv_base_n *= inv_base |
|
return val |
|
|
|
def halton_sequence(dim, n): |
|
return [radical_inverse(PRIMES[dim], n) for dim in range(dim)] |
|
|
|
def hammersley_sequence(dim, n, num_samples): |
|
return [n / num_samples] + halton_sequence(dim - 1, n) |
|
|
|
def sphere_hammersley_sequence(n, num_samples, offset=(0, 0), remap=False): |
|
u, v = hammersley_sequence(2, n, num_samples) |
|
u += offset[0] / num_samples |
|
v += offset[1] |
|
if remap: |
|
u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3 |
|
theta = np.arccos(1 - 2 * u) - np.pi / 2 |
|
phi = v * 2 * np.pi |
|
return [phi, theta] |