|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from .full_attn import scaled_dot_product_attention |
|
|
|
|
|
class MultiHeadRMSNorm(nn.Module): |
|
def __init__(self, dim: int, heads: int): |
|
super().__init__() |
|
self.scale = dim ** 0.5 |
|
self.gamma = nn.Parameter(torch.ones(heads, dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype) |
|
|
|
|
|
class RotaryPositionEmbedder(nn.Module): |
|
def __init__(self, hidden_size: int, in_channels: int = 3): |
|
super().__init__() |
|
assert hidden_size % 2 == 0, "Hidden size must be divisible by 2" |
|
self.hidden_size = hidden_size |
|
self.in_channels = in_channels |
|
self.freq_dim = hidden_size // in_channels // 2 |
|
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim |
|
self.freqs = 1.0 / (10000 ** self.freqs) |
|
|
|
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor: |
|
self.freqs = self.freqs.to(indices.device) |
|
phases = torch.outer(indices, self.freqs) |
|
phases = torch.polar(torch.ones_like(phases), phases) |
|
return phases |
|
|
|
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor: |
|
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) |
|
x_rotated = x_complex * phases |
|
x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype) |
|
return x_embed |
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Args: |
|
q (sp.SparseTensor): [..., N, D] tensor of queries |
|
k (sp.SparseTensor): [..., N, D] tensor of keys |
|
indices (torch.Tensor): [..., N, C] tensor of spatial positions |
|
""" |
|
if indices is None: |
|
indices = torch.arange(q.shape[-2], device=q.device) |
|
if len(q.shape) > 2: |
|
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,)) |
|
|
|
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1) |
|
if phases.shape[1] < self.hidden_size // 2: |
|
phases = torch.cat([phases, torch.polar( |
|
torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device), |
|
torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device) |
|
)], dim=-1) |
|
q_embed = self._rotary_embedding(q, phases) |
|
k_embed = self._rotary_embedding(k, phases) |
|
return q_embed, k_embed |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__( |
|
self, |
|
channels: int, |
|
num_heads: int, |
|
ctx_channels: Optional[int]=None, |
|
type: Literal["self", "cross"] = "self", |
|
attn_mode: Literal["full", "windowed"] = "full", |
|
window_size: Optional[int] = None, |
|
shift_window: Optional[Tuple[int, int, int]] = None, |
|
qkv_bias: bool = True, |
|
use_rope: bool = False, |
|
qk_rms_norm: bool = False, |
|
): |
|
super().__init__() |
|
assert channels % num_heads == 0 |
|
assert type in ["self", "cross"], f"Invalid attention type: {type}" |
|
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}" |
|
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention" |
|
|
|
if attn_mode == "windowed": |
|
raise NotImplementedError("Windowed attention is not yet implemented") |
|
|
|
self.channels = channels |
|
self.head_dim = channels // num_heads |
|
self.ctx_channels = ctx_channels if ctx_channels is not None else channels |
|
self.num_heads = num_heads |
|
self._type = type |
|
self.attn_mode = attn_mode |
|
self.window_size = window_size |
|
self.shift_window = shift_window |
|
self.use_rope = use_rope |
|
self.qk_rms_norm = qk_rms_norm |
|
|
|
if self._type == "self": |
|
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias) |
|
else: |
|
self.to_q = nn.Linear(channels, channels, bias=qkv_bias) |
|
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias) |
|
|
|
if self.qk_rms_norm: |
|
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads) |
|
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads) |
|
|
|
self.to_out = nn.Linear(channels, channels) |
|
|
|
if use_rope: |
|
self.rope = RotaryPositionEmbedder(channels) |
|
|
|
def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
B, L, C = x.shape |
|
if self._type == "self": |
|
qkv = self.to_qkv(x) |
|
qkv = qkv.reshape(B, L, 3, self.num_heads, -1) |
|
if self.use_rope: |
|
q, k, v = qkv.unbind(dim=2) |
|
q, k = self.rope(q, k, indices) |
|
qkv = torch.stack([q, k, v], dim=2) |
|
if self.attn_mode == "full": |
|
if self.qk_rms_norm: |
|
q, k, v = qkv.unbind(dim=2) |
|
q = self.q_rms_norm(q) |
|
k = self.k_rms_norm(k) |
|
h = scaled_dot_product_attention(q, k, v) |
|
else: |
|
h = scaled_dot_product_attention(qkv) |
|
elif self.attn_mode == "windowed": |
|
raise NotImplementedError("Windowed attention is not yet implemented") |
|
else: |
|
Lkv = context.shape[1] |
|
q = self.to_q(x) |
|
kv = self.to_kv(context) |
|
q = q.reshape(B, L, self.num_heads, -1) |
|
kv = kv.reshape(B, Lkv, 2, self.num_heads, -1) |
|
if self.qk_rms_norm: |
|
q = self.q_rms_norm(q) |
|
k, v = kv.unbind(dim=2) |
|
k = self.k_rms_norm(k) |
|
h = scaled_dot_product_attention(q, k, v) |
|
else: |
|
h = scaled_dot_product_attention(q, kv) |
|
h = h.reshape(B, L, -1) |
|
h = self.to_out(h) |
|
return h |
|
|