|
import gradio as gr |
|
|
|
|
|
import os |
|
from typing import * |
|
import imageio |
|
import uuid |
|
from PIL import Image |
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
from trellis.utils import render_utils, postprocessing_utils |
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Image.Image: |
|
""" |
|
Preprocess the input image. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
|
|
Returns: |
|
Image.Image: The preprocessed image. |
|
""" |
|
return pipeline.preprocess_image(image) |
|
|
|
|
|
def image_to_3d(image: Image.Image) -> Tuple[dict, str]: |
|
""" |
|
Convert an image to a 3D model. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
|
|
Returns: |
|
dict: The information of the generated 3D model. |
|
str: The path to the video of the 3D model. |
|
""" |
|
outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False) |
|
video = render_utils.render_video(outputs['gaussian'][0])['color'] |
|
model_id = uuid.uuid4() |
|
video_path = f"/tmp/Trellis-demo/{model_id}.mp4" |
|
os.makedirs(os.path.dirname(video_path), exist_ok=True) |
|
imageio.mimsave(video_path, video, fps=30) |
|
model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id} |
|
return model, video_path |
|
|
|
|
|
def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: |
|
""" |
|
Extract a GLB file from the 3D model. |
|
|
|
Args: |
|
model (dict): The generated 3D model. |
|
mesh_simplify (float): The mesh simplification factor. |
|
texture_size (int): The texture resolution. |
|
|
|
Returns: |
|
str: The path to the extracted GLB file. |
|
""" |
|
glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size) |
|
glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb" |
|
glb.export(glb_path) |
|
return glb_path, glb_path |
|
|
|
|
|
def activate_button() -> gr.Button: |
|
return gr.Button(interactive=True) |
|
|
|
|
|
def deactivate_button() -> gr.Button: |
|
return gr.Button(interactive=False) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) |
|
generate_btn = gr.Button("Generate", interactive=False) |
|
|
|
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) |
|
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) |
|
extract_glb_btn = gr.Button("Extract GLB", interactive=False) |
|
|
|
with gr.Column(): |
|
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) |
|
model_output = gr.Model3D(label="Extracted GLB", height=300) |
|
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) |
|
|
|
|
|
with gr.Row(): |
|
examples = gr.Examples( |
|
examples=[ |
|
f'assets/example_image/{image}' |
|
for image in os.listdir("assets/example_image") |
|
], |
|
inputs=[image_prompt], |
|
fn=lambda image: (preprocess_image(image), gr.Button(interactive=True)), |
|
outputs=[image_prompt, generate_btn], |
|
run_on_click=True, |
|
examples_per_page=64, |
|
) |
|
|
|
model = gr.State() |
|
|
|
|
|
image_prompt.upload( |
|
preprocess_image, |
|
inputs=[image_prompt], |
|
outputs=[image_prompt], |
|
).then( |
|
activate_button, |
|
outputs=[generate_btn], |
|
) |
|
|
|
image_prompt.clear( |
|
deactivate_button, |
|
outputs=[generate_btn], |
|
) |
|
|
|
generate_btn.click( |
|
image_to_3d, |
|
inputs=[image_prompt], |
|
outputs=[model, video_output], |
|
).then( |
|
activate_button, |
|
outputs=[extract_glb_btn], |
|
) |
|
|
|
video_output.clear( |
|
deactivate_button, |
|
outputs=[extract_glb_btn], |
|
) |
|
|
|
extract_glb_btn.click( |
|
extract_glb, |
|
inputs=[model, mesh_simplify, texture_size], |
|
outputs=[model_output, download_glb], |
|
).then( |
|
activate_button, |
|
outputs=[download_glb], |
|
) |
|
|
|
model_output.clear( |
|
deactivate_button, |
|
outputs=[download_glb], |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") |
|
pipeline.cuda() |
|
demo.launch() |
|
|