|
from typing import * |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from ...modules import sparse as sp |
|
from .base import SparseTransformerBase |
|
|
|
|
|
class SLatEncoder(SparseTransformerBase): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
in_channels: int, |
|
model_channels: int, |
|
latent_channels: int, |
|
num_blocks: int, |
|
num_heads: Optional[int] = None, |
|
num_head_channels: Optional[int] = 64, |
|
mlp_ratio: float = 4, |
|
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "swin", |
|
window_size: int = 8, |
|
pe_mode: Literal["ape", "rope"] = "ape", |
|
use_fp16: bool = False, |
|
use_checkpoint: bool = False, |
|
qk_rms_norm: bool = False, |
|
): |
|
super().__init__( |
|
in_channels=in_channels, |
|
model_channels=model_channels, |
|
num_blocks=num_blocks, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
mlp_ratio=mlp_ratio, |
|
attn_mode=attn_mode, |
|
window_size=window_size, |
|
pe_mode=pe_mode, |
|
use_fp16=use_fp16, |
|
use_checkpoint=use_checkpoint, |
|
qk_rms_norm=qk_rms_norm, |
|
) |
|
self.resolution = resolution |
|
self.out_layer = sp.SparseLinear(model_channels, 2 * latent_channels) |
|
|
|
self.initialize_weights() |
|
if use_fp16: |
|
self.convert_to_fp16() |
|
|
|
def initialize_weights(self) -> None: |
|
super().initialize_weights() |
|
|
|
nn.init.constant_(self.out_layer.weight, 0) |
|
nn.init.constant_(self.out_layer.bias, 0) |
|
|
|
def forward(self, x: sp.SparseTensor, sample_posterior=True, return_raw=False): |
|
h = super().forward(x) |
|
h = h.type(x.dtype) |
|
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) |
|
h = self.out_layer(h) |
|
|
|
|
|
mean, logvar = h.feats.chunk(2, dim=-1) |
|
if sample_posterior: |
|
std = torch.exp(0.5 * logvar) |
|
z = mean + std * torch.randn_like(std) |
|
else: |
|
z = mean |
|
z = h.replace(z) |
|
|
|
if return_raw: |
|
return z, mean, logvar |
|
else: |
|
return z |
|
|