|
import torch |
|
import torch.nn as nn |
|
from . import SparseTensor |
|
from . import DEBUG |
|
|
|
__all__ = [ |
|
'SparseGroupNorm', |
|
'SparseLayerNorm', |
|
'SparseGroupNorm32', |
|
'SparseLayerNorm32', |
|
] |
|
|
|
|
|
class SparseGroupNorm(nn.GroupNorm): |
|
def __init__(self, num_groups, num_channels, eps=1e-5, affine=True): |
|
super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine) |
|
|
|
def forward(self, input: SparseTensor) -> SparseTensor: |
|
nfeats = torch.zeros_like(input.feats) |
|
for k in range(input.shape[0]): |
|
if DEBUG: |
|
assert (input.coords[input.layout[k], 0] == k).all(), f"SparseGroupNorm: batch index mismatch" |
|
bfeats = input.feats[input.layout[k]] |
|
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1) |
|
bfeats = super().forward(bfeats) |
|
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0) |
|
nfeats[input.layout[k]] = bfeats |
|
return input.replace(nfeats) |
|
|
|
|
|
class SparseLayerNorm(nn.LayerNorm): |
|
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True): |
|
super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine) |
|
|
|
def forward(self, input: SparseTensor) -> SparseTensor: |
|
nfeats = torch.zeros_like(input.feats) |
|
for k in range(input.shape[0]): |
|
bfeats = input.feats[input.layout[k]] |
|
bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1) |
|
bfeats = super().forward(bfeats) |
|
bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0) |
|
nfeats[input.layout[k]] = bfeats |
|
return input.replace(nfeats) |
|
|
|
|
|
class SparseGroupNorm32(SparseGroupNorm): |
|
""" |
|
A GroupNorm layer that converts to float32 before the forward pass. |
|
""" |
|
def forward(self, x: SparseTensor) -> SparseTensor: |
|
return super().forward(x.float()).type(x.dtype) |
|
|
|
class SparseLayerNorm32(SparseLayerNorm): |
|
""" |
|
A LayerNorm layer that converts to float32 before the forward pass. |
|
""" |
|
def forward(self, x: SparseTensor) -> SparseTensor: |
|
return super().forward(x.float()).type(x.dtype) |
|
|