Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,237 +1,195 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import json
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
9 |
-
#
|
10 |
-
from smolagents import Tool
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
13 |
print("Access token loaded.")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
"black-forest-labs/FLUX.1-schnell",
|
20 |
-
name="image_generator",
|
21 |
-
description="Generates an image from a text prompt. Use it when the user asks to 'generate an image of ...' or 'draw a picture of ...'. The input should be the descriptive prompt for the image."
|
22 |
-
)
|
23 |
-
print("Image generation tool loaded successfully.")
|
24 |
-
except Exception as e:
|
25 |
-
print(f"Error loading image generation tool: {e}")
|
26 |
-
image_generation_tool = None
|
27 |
-
|
28 |
-
# Function to encode image to base64
|
29 |
-
def encode_image(image_path):
|
30 |
-
if not image_path:
|
31 |
-
print("No image path provided")
|
32 |
return None
|
33 |
|
34 |
try:
|
35 |
-
print(f"Encoding image
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Try to open the image file
|
42 |
-
image = Image.open(image_path)
|
43 |
|
44 |
-
# Convert to RGB if image has an alpha channel (RGBA)
|
45 |
if image.mode == 'RGBA':
|
46 |
image = image.convert('RGB')
|
47 |
|
48 |
-
# Encode to base64
|
49 |
buffered = io.BytesIO()
|
50 |
-
image.save(buffered, format="JPEG")
|
51 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
52 |
-
print("Image encoded successfully")
|
53 |
return img_str
|
54 |
except Exception as e:
|
55 |
print(f"Error encoding image: {e}")
|
56 |
return None
|
57 |
|
|
|
58 |
def respond(
|
59 |
-
message_text, #
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
max_tokens,
|
64 |
temperature,
|
65 |
top_p,
|
66 |
frequency_penalty,
|
67 |
seed,
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
model_search_term,
|
72 |
-
|
73 |
):
|
74 |
-
print(f"
|
75 |
-
print(f"Received {len(image_files) if image_files else 0} image files: {image_files}")
|
76 |
-
# print(f"History: {history}") # Can be very verbose
|
77 |
-
print(f"System message: {system_message}")
|
78 |
-
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
79 |
-
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
80 |
-
print(f"Selected provider: {provider}")
|
81 |
-
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
|
82 |
-
print(f"Selected model (custom_model): {custom_model}")
|
83 |
-
print(f"Model search term: {model_search_term}")
|
84 |
-
print(f"Selected model from radio: {selected_model}")
|
85 |
-
|
86 |
-
# Determine which token to use
|
87 |
-
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
88 |
-
|
89 |
-
if custom_api_key.strip() != "":
|
90 |
-
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
91 |
-
else:
|
92 |
-
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
93 |
-
|
94 |
-
user_text_message_lower = message_text.lower() if message_text else ""
|
95 |
-
|
96 |
-
image_keywords = ["generate image", "draw a picture of", "create an image of", "make an image of"]
|
97 |
-
is_image_generation_request = any(keyword in user_text_message_lower for keyword in image_keywords)
|
98 |
-
|
99 |
-
if is_image_generation_request and image_generation_tool:
|
100 |
-
print("Image generation request detected.")
|
101 |
-
image_prompt = message_text
|
102 |
-
for keyword in image_keywords:
|
103 |
-
if keyword in user_text_message_lower:
|
104 |
-
# Find the keyword in the original case-sensitive message text to split
|
105 |
-
keyword_start_index = user_text_message_lower.find(keyword)
|
106 |
-
image_prompt = message_text[keyword_start_index + len(keyword):].strip()
|
107 |
-
break
|
108 |
-
|
109 |
-
print(f"Extracted image prompt: {image_prompt}")
|
110 |
-
if not image_prompt:
|
111 |
-
yield {"type": "text", "content": "Please provide a description for the image you want to generate."}
|
112 |
-
return
|
113 |
-
|
114 |
-
try:
|
115 |
-
generated_image_path = image_generation_tool(prompt=image_prompt)
|
116 |
-
print(f"Image generated by tool, path: {generated_image_path}")
|
117 |
-
yield {"type": "image", "path": str(generated_image_path)} # Ensure path is string
|
118 |
-
return
|
119 |
-
except Exception as e:
|
120 |
-
print(f"Error during image generation tool call: {e}")
|
121 |
-
yield {"type": "text", "content": f"Sorry, I couldn't generate the image. Error: {str(e)}"}
|
122 |
-
return
|
123 |
-
elif is_image_generation_request and not image_generation_tool:
|
124 |
-
yield {"type": "text", "content": "Image generation tool is not available or failed to load."}
|
125 |
-
return
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
client = InferenceClient(token=token_to_use, provider=provider)
|
130 |
-
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
encoded_image = encode_image(img_path) # img_path is already a path
|
145 |
-
if encoded_image:
|
146 |
-
llm_user_content.append({
|
147 |
-
"type": "image_url",
|
148 |
-
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
|
149 |
-
})
|
150 |
-
except Exception as e:
|
151 |
-
print(f"Error encoding image for LLM: {e}")
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
return
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
if assistant_response_hist:
|
170 |
-
# Assistant response could be text or an image dict from a previous tool call
|
171 |
-
if isinstance(assistant_response_hist, dict) and assistant_response_hist.get("type") == "image":
|
172 |
-
messages_for_llm.append({"role": "assistant", "content": [{"type": "text", "text": f"Assistant previously displayed image: {assistant_response_hist.get('path')}"}]})
|
173 |
-
elif isinstance(assistant_response_hist, str):
|
174 |
-
messages_for_llm.append({"role": "assistant", "content": assistant_response_hist})
|
175 |
-
# Else, if it's a dict but not an image type we understand for history, we might skip or log an error
|
176 |
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
parameters = {
|
187 |
-
"max_tokens": max_tokens,
|
188 |
-
"temperature": temperature,
|
189 |
-
"top_p": top_p,
|
190 |
-
"frequency_penalty": frequency_penalty,
|
191 |
-
}
|
192 |
-
|
193 |
-
if seed is not None:
|
194 |
-
parameters["seed"] = seed
|
195 |
|
196 |
-
try:
|
197 |
-
stream = client.chat_completion(
|
198 |
-
model=model_to_use,
|
199 |
-
messages=messages_for_llm,
|
200 |
-
stream=True,
|
201 |
-
**parameters
|
202 |
-
)
|
203 |
-
|
204 |
-
print("Received LLM tokens: ", end="", flush=True)
|
205 |
-
|
206 |
-
for chunk in stream:
|
207 |
-
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
208 |
-
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
209 |
-
token_text = chunk.choices[0].delta.content
|
210 |
-
if token_text:
|
211 |
-
print(token_text, end="", flush=True)
|
212 |
-
response_text += token_text
|
213 |
-
yield {"type": "text", "content": response_text}
|
214 |
-
|
215 |
-
print()
|
216 |
except Exception as e:
|
217 |
-
|
218 |
-
|
219 |
-
yield
|
220 |
|
221 |
-
print("
|
222 |
|
|
|
|
|
223 |
def validate_provider(api_key, provider):
|
224 |
if not api_key.strip() and provider != "hf-inference":
|
225 |
return gr.update(value="hf-inference")
|
226 |
return gr.update(value=provider)
|
227 |
|
|
|
228 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
229 |
chatbot = gr.Chatbot(
|
230 |
height=600,
|
231 |
show_copy_button=True,
|
232 |
-
placeholder="Select a model and begin chatting. Now
|
233 |
layout="panel",
|
234 |
-
bubble_full_width=False
|
235 |
)
|
236 |
print("Chatbot interface created.")
|
237 |
|
@@ -247,164 +205,199 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
247 |
|
248 |
with gr.Accordion("Settings", open=False):
|
249 |
system_message_box = gr.Textbox(
|
250 |
-
value="You are a helpful AI assistant
|
251 |
-
placeholder="You are a helpful assistant.",
|
252 |
-
label="System Prompt"
|
253 |
)
|
254 |
|
255 |
with gr.Row():
|
256 |
with gr.Column():
|
257 |
-
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=
|
258 |
-
temperature_slider = gr.Slider(minimum=0.
|
259 |
-
top_p_slider = gr.Slider(minimum=0.
|
260 |
with gr.Column():
|
261 |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
262 |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
263 |
|
264 |
-
providers_list = [
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
269 |
|
270 |
models_list = [
|
271 |
-
"meta-llama/Llama-3.
|
272 |
-
"meta-llama/Llama-3.
|
273 |
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
274 |
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
275 |
-
"
|
276 |
-
"Qwen/Qwen2.5-
|
277 |
-
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
|
278 |
]
|
279 |
-
featured_model_radio = gr.Radio(label="Select a
|
280 |
|
281 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
288 |
-
print(f"Filtered models: {filtered}")
|
289 |
-
return gr.update(choices=filtered)
|
290 |
-
|
291 |
-
def set_custom_model_from_radio(selected):
|
292 |
-
print(f"Featured model selected: {selected}")
|
293 |
-
return selected
|
294 |
-
|
295 |
-
def user(user_multimodal_input, history):
|
296 |
-
print(f"User input (raw from gr.MultimodalTextbox): {user_multimodal_input}")
|
297 |
-
|
298 |
-
text_content = user_multimodal_input.get("text", "").strip()
|
299 |
-
files = user_multimodal_input.get("files", []) # These are temp file paths from Gradio
|
300 |
-
|
301 |
-
if not text_content and not files:
|
302 |
-
print("Empty input, skipping history append.")
|
303 |
-
# Optionally, could raise gr.Error("Please enter a message or upload an image.")
|
304 |
-
# For now, let's allow the bot to respond if history is not empty,
|
305 |
-
# or do nothing if history is also empty.
|
306 |
-
return history
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
history_user_entry_content.append({"type": "image_url", "image_url": {"url": file_path_obj.name}})
|
319 |
-
print(f"Adding image to history entry: {file_path_obj.name}")
|
320 |
|
321 |
-
if
|
322 |
-
history
|
323 |
-
|
|
|
|
|
|
|
324 |
return history
|
325 |
-
|
326 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
327 |
-
if not history or not history[-1][0]: # If no user
|
328 |
-
|
329 |
-
yield history # Return current history without processing
|
330 |
return
|
331 |
|
332 |
-
|
|
|
|
|
333 |
|
334 |
-
#
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
-
for item in user_content_list:
|
339 |
-
if item["type"] == "text":
|
340 |
-
text_for_respond = item["text"]
|
341 |
-
elif item["type"] == "image_url":
|
342 |
-
image_files_for_respond.append(item["image_url"]["url"])
|
343 |
|
344 |
-
history[-1][1] = "" #
|
345 |
|
346 |
-
#
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
):
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
#
|
371 |
-
#
|
372 |
-
#
|
373 |
-
#
|
374 |
-
history[-1][1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
yield history
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
msg.submit(
|
378 |
user,
|
379 |
[msg, chatbot],
|
380 |
-
[chatbot],
|
381 |
queue=False
|
382 |
).then(
|
383 |
bot,
|
384 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
385 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
386 |
model_search_box, featured_model_radio],
|
387 |
-
[chatbot]
|
388 |
).then(
|
389 |
-
lambda: {"text": "", "files": []},
|
390 |
None,
|
391 |
[msg]
|
392 |
)
|
393 |
|
394 |
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
|
395 |
-
print("Model search box change event linked.")
|
396 |
-
|
397 |
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
398 |
-
print("Featured model radio button change event linked.")
|
399 |
-
|
400 |
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
401 |
-
print("BYOK textbox change event linked.")
|
402 |
-
|
403 |
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
404 |
-
print("Provider radio button change event linked.")
|
405 |
|
406 |
print("Gradio interface initialized.")
|
407 |
|
408 |
if __name__ == "__main__":
|
409 |
print("Launching the demo application.")
|
410 |
-
demo.launch(show_api=True
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient # Keep for direct use if needed, though agent will use its own model
|
3 |
import os
|
4 |
import json
|
5 |
import base64
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
|
9 |
+
# Smolagents imports
|
10 |
+
from smolagents import CodeAgent, Tool
|
11 |
+
from smolagents.models import InferenceClientModel as SmolInferenceClientModel
|
12 |
+
# We'll use PIL.Image directly for opening, AgentImage is for agent's internal typing if needed by a tool
|
13 |
+
from smolagents.gradio_ui import pull_messages_from_step # For formatting agent steps
|
14 |
+
from smolagents.memory import ActionStep, FinalAnswerStep, PlanningStep, MemoryStep # For type checking steps
|
15 |
+
from smolagents.models import ChatMessageStreamDelta # For type checking stream deltas
|
16 |
+
|
17 |
|
18 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
19 |
print("Access token loaded.")
|
20 |
|
21 |
+
# Function to encode image to base64 (remains useful if we ever need to pass base64 to a non-smolagent component)
|
22 |
+
def encode_image(image_path_or_pil):
|
23 |
+
if not image_path_or_pil:
|
24 |
+
print("No image path or PIL Image provided")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return None
|
26 |
|
27 |
try:
|
28 |
+
# print(f"Encoding image: {type(image_path_or_pil)}") # Debug
|
29 |
|
30 |
+
if isinstance(image_path_or_pil, Image.Image):
|
31 |
+
image = image_path_or_pil
|
32 |
+
else: # Assuming it's a path
|
33 |
+
image = Image.open(image_path_or_pil)
|
|
|
|
|
34 |
|
|
|
35 |
if image.mode == 'RGBA':
|
36 |
image = image.convert('RGB')
|
37 |
|
|
|
38 |
buffered = io.BytesIO()
|
39 |
+
image.save(buffered, format="JPEG") # JPEG is generally smaller for transfer
|
40 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
41 |
+
# print("Image encoded successfully") # Debug
|
42 |
return img_str
|
43 |
except Exception as e:
|
44 |
print(f"Error encoding image: {e}")
|
45 |
return None
|
46 |
|
47 |
+
# This function will now set up and run the smolagent
|
48 |
def respond(
|
49 |
+
message_text, # Text from MultimodalTextbox
|
50 |
+
image_file_paths, # List of file paths from MultimodalTextbox
|
51 |
+
gradio_history: list[tuple[str, str]], # Gradio history (for context if needed, agent is stateless per call here)
|
52 |
+
system_message_for_agent, # System prompt for the main LLM agent
|
53 |
max_tokens,
|
54 |
temperature,
|
55 |
top_p,
|
56 |
frequency_penalty,
|
57 |
seed,
|
58 |
+
provider_for_agent_llm,
|
59 |
+
api_key_for_agent_llm,
|
60 |
+
model_id_for_agent_llm,
|
61 |
+
model_search_term, # Unused directly by agent logic
|
62 |
+
selected_model_for_agent_llm # Fallback model ID
|
63 |
):
|
64 |
+
print(f"Respond function called. Message: '{message_text}', Images: {image_file_paths}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
token_to_use = api_key_for_agent_llm if api_key_for_agent_llm.strip() != "" else ACCESS_TOKEN
|
67 |
+
model_to_use = model_id_for_agent_llm.strip() if model_id_for_agent_llm.strip() != "" else selected_model_for_agent_llm
|
|
|
|
|
68 |
|
69 |
+
# --- Initialize the LLM for the CodeAgent ---
|
70 |
+
agent_llm_params = {
|
71 |
+
"model_id": model_to_use,
|
72 |
+
"token": token_to_use,
|
73 |
+
# smolagents's InferenceClientModel uses max_tokens for max_new_tokens
|
74 |
+
"max_tokens": max_tokens,
|
75 |
+
"temperature": temperature if temperature > 0.01 else None, # Some models require temp > 0
|
76 |
+
"top_p": top_p if top_p < 1.0 else None, # Often 1.0 means no top_p
|
77 |
+
"seed": seed if seed != -1 else None,
|
78 |
+
}
|
79 |
+
if provider_for_agent_llm and provider_for_agent_llm != "hf-inference":
|
80 |
+
agent_llm_params["provider"] = provider_for_agent_llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# HFIC specific params, add if not default and supported
|
83 |
+
if frequency_penalty != 0.0:
|
84 |
+
agent_llm_params["frequency_penalty"] = frequency_penalty
|
85 |
+
|
86 |
+
agent_llm = SmolInferenceClientModel(**agent_llm_params)
|
87 |
+
print(f"Smolagents LLM for agent initialized: model='{model_to_use}', provider='{provider_for_agent_llm or 'default'}'")
|
88 |
+
|
89 |
+
# --- Define Tools for the Agent ---
|
90 |
+
agent_tools = []
|
91 |
+
try:
|
92 |
+
image_gen_tool = Tool.from_space(
|
93 |
+
space_id="black-forest-labs/FLUX.1-schnell",
|
94 |
+
name="image_generator",
|
95 |
+
description="Generates an image from a textual prompt. Input is a single string argument named 'prompt'. Output is an image file path.",
|
96 |
+
token=token_to_use
|
97 |
+
)
|
98 |
+
agent_tools.append(image_gen_tool)
|
99 |
+
print("Image generation tool loaded: black-forest-labs/FLUX.1-schnell")
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error loading image generation tool: {e}")
|
102 |
+
yield f"Error: Could not load image generation tool. {e}"
|
103 |
return
|
104 |
|
105 |
+
# --- Initialize the CodeAgent ---
|
106 |
+
# If system_message_for_agent is empty, CodeAgent will use its default.
|
107 |
+
# The default is usually good as it explains how to use tools.
|
108 |
+
agent = CodeAgent(
|
109 |
+
tools=agent_tools,
|
110 |
+
model=agent_llm,
|
111 |
+
system_prompt=system_message_for_agent if system_message_for_agent and system_message_for_agent.strip() else None,
|
112 |
+
# add_base_tools=True, # Consider adding Python interpreter, etc.
|
113 |
+
stream_outputs=True # Important for Gradio streaming
|
114 |
+
)
|
115 |
+
print("Smolagents CodeAgent initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
# --- Prepare task and image inputs for the agent ---
|
118 |
+
agent_task_text = message_text
|
119 |
+
|
120 |
+
pil_images_for_agent = []
|
121 |
+
if image_file_paths:
|
122 |
+
for file_path in image_file_paths:
|
123 |
+
try:
|
124 |
+
pil_images_for_agent.append(Image.open(file_path))
|
125 |
+
except Exception as e:
|
126 |
+
print(f"Error opening image file {file_path} for agent: {e}")
|
127 |
+
|
128 |
+
print(f"Agent task: '{agent_task_text}'")
|
129 |
+
if pil_images_for_agent:
|
130 |
+
print(f"Passing {len(pil_images_for_agent)} image(s) to agent.")
|
131 |
|
132 |
+
# --- Run the agent and stream response ---
|
133 |
+
# Agent is reset each turn. For conversational memory, agent instance
|
134 |
+
# would need to be stored in session_state and agent.run(..., reset=False) used.
|
135 |
+
|
136 |
+
current_agent_response_text = ""
|
137 |
+
try:
|
138 |
+
# The agent.run method returns a generator when stream=True
|
139 |
+
for step_item in agent.run(
|
140 |
+
task=agent_task_text,
|
141 |
+
images=pil_images_for_agent,
|
142 |
+
stream=True,
|
143 |
+
reset=True # Explicitly reset for stateless operation per call
|
144 |
+
):
|
145 |
+
if isinstance(step_item, ChatMessageStreamDelta):
|
146 |
+
if step_item.content:
|
147 |
+
current_agent_response_text += step_item.content
|
148 |
+
yield current_agent_response_text # Yield accumulated text
|
149 |
+
|
150 |
+
elif isinstance(step_item, (ActionStep, PlanningStep, FinalAnswerStep)):
|
151 |
+
# A structured step. Format it for Gradio.
|
152 |
+
# pull_messages_from_step yields gr.ChatMessage objects.
|
153 |
+
for gradio_chat_msg in pull_messages_from_step(step_item, skip_model_outputs=agent.stream_outputs):
|
154 |
+
# The 'bot' function will handle these gr.ChatMessage objects.
|
155 |
+
yield gradio_chat_msg # Yield the gr.ChatMessage object directly
|
156 |
+
current_agent_response_text = "" # Reset text buffer after a structured step
|
157 |
+
|
158 |
+
# else:
|
159 |
+
# print(f"Unhandled stream item type: {type(step_item)}") # Debug
|
160 |
|
161 |
+
# If there's any remaining text not part of a gr.ChatMessage, yield it.
|
162 |
+
# This usually shouldn't happen if stream_to_gradio logic is followed,
|
163 |
+
# as text deltas should be part of the last gr.ChatMessage or yielded before it.
|
164 |
+
# However, if the agent's final textual answer comes as pure deltas after all steps.
|
165 |
+
if current_agent_response_text and not isinstance(step_item, FinalAnswerStep):
|
166 |
+
# Check if the last yielded item already contains this text
|
167 |
+
if not (isinstance(step_item, gr.ChatMessage) and step_item.content == current_agent_response_text):
|
168 |
+
yield current_agent_response_text
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
except Exception as e:
|
172 |
+
error_message = f"Error during agent execution: {str(e)}"
|
173 |
+
print(error_message)
|
174 |
+
yield error_message # Yield the error message to be displayed in UI
|
175 |
|
176 |
+
print("Agent run completed.")
|
177 |
|
178 |
+
|
179 |
+
# Function to validate provider selection based on BYOK
|
180 |
def validate_provider(api_key, provider):
|
181 |
if not api_key.strip() and provider != "hf-inference":
|
182 |
return gr.update(value="hf-inference")
|
183 |
return gr.update(value=provider)
|
184 |
|
185 |
+
# GRADIO UI
|
186 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
187 |
chatbot = gr.Chatbot(
|
188 |
height=600,
|
189 |
show_copy_button=True,
|
190 |
+
placeholder="Select a model and begin chatting. Now uses smolagents with tools!",
|
191 |
layout="panel",
|
192 |
+
bubble_full_width=False # For better display of images/files
|
193 |
)
|
194 |
print("Chatbot interface created.")
|
195 |
|
|
|
205 |
|
206 |
with gr.Accordion("Settings", open=False):
|
207 |
system_message_box = gr.Textbox(
|
208 |
+
value="You are a helpful AI assistant. You can generate images if asked. Be precise with your prompts for image generation.",
|
209 |
+
placeholder="You are a helpful AI assistant.",
|
210 |
+
label="System Prompt for Agent"
|
211 |
)
|
212 |
|
213 |
with gr.Row():
|
214 |
with gr.Column():
|
215 |
+
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max New Tokens")
|
216 |
+
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.01, label="Temperature")
|
217 |
+
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="Top-P")
|
218 |
with gr.Column():
|
219 |
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
220 |
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
221 |
|
222 |
+
providers_list = [
|
223 |
+
"hf-inference", "cerebras", "together", "sambanova", "novita",
|
224 |
+
"cohere", "fireworks-ai", "hyperbolic", "nebius",
|
225 |
+
]
|
226 |
+
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider for Agent's LLM")
|
227 |
+
byok_textbox = gr.Textbox(value="", label="BYOK (Your HF Token or Provider API Key)", info="Enter API key for the selected provider. Uses HF_TOKEN if empty.", placeholder="Enter your API token", type="password")
|
228 |
+
custom_model_box = gr.Textbox(value="", label="Custom Model ID for Agent's LLM", info="(Optional) Provide a custom model ID. Overrides featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
|
229 |
+
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search for a featured model...", lines=1)
|
230 |
|
231 |
models_list = [
|
232 |
+
"meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
|
233 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
|
234 |
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
235 |
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
236 |
+
"Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct",
|
237 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct",
|
|
|
238 |
]
|
239 |
+
featured_model_radio = gr.Radio(label="Select a Featured Model for Agent's LLM", choices=models_list, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True)
|
240 |
|
241 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
242 |
|
243 |
+
# Chat history state (using gr.State to manage it properly)
|
244 |
+
# The chatbot's value itself will be the history display.
|
245 |
+
# We might need a separate gr.State if agent needs to be conversational across turns.
|
246 |
+
# For now, agent is stateless per turn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
# Function for the chat interface
|
249 |
+
def user(user_multimodal_input_dict, history):
|
250 |
+
print(f"User input: {user_multimodal_input_dict}")
|
251 |
+
text_content = user_multimodal_input_dict.get("text", "")
|
252 |
+
files = user_multimodal_input_dict.get("files", [])
|
253 |
|
254 |
+
user_display_parts = []
|
255 |
+
if text_content and text_content.strip():
|
256 |
+
user_display_parts.append(text_content)
|
257 |
+
for file_path_obj in files: # file_path_obj is a tempfile._TemporaryFileWrapper
|
258 |
+
user_display_parts.append((file_path_obj.name, os.path.basename(file_path_obj.name)))
|
|
|
|
|
259 |
|
260 |
+
if not user_display_parts:
|
261 |
+
return history
|
262 |
+
|
263 |
+
# Append the user's multimodal message to history for display
|
264 |
+
# The actual data (dict) is passed to `bot` function separately.
|
265 |
+
history.append([user_display_parts if len(user_display_parts) > 1 else user_display_parts[0], None])
|
266 |
return history
|
267 |
+
|
268 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
269 |
+
if not history or not history[-1][0]: # If no user input
|
270 |
+
yield history
|
|
|
271 |
return
|
272 |
|
273 |
+
# The user's input (text and list of file paths) is in history[-1][0]
|
274 |
+
# If `user` function stores the dict:
|
275 |
+
raw_user_input_dict = history[-1][0] if isinstance(history[-1][0], dict) else {"text": str(history[-1][0]), "files": []}
|
276 |
|
277 |
+
# If `user` function stores formatted display parts:
|
278 |
+
# We need to reconstruct or rely on msg input to bot.
|
279 |
+
# For now, assuming msg.submit passes the raw dict.
|
280 |
+
# Let's adjust the Gradio flow to pass `msg` directly to `bot` as well.
|
281 |
+
|
282 |
+
# The `msg` variable in `msg.submit` holds the raw MultimodalTextbox output.
|
283 |
+
# We need to pass this raw dict to `respond`.
|
284 |
+
# The `history` is for display.
|
285 |
+
|
286 |
+
# This part is tricky as `bot` gets `history` which is already formatted for display.
|
287 |
+
# A common pattern is to pass `msg` (raw input) also to `bot`.
|
288 |
+
# Let's assume `history[-1][0]` contains enough info or we adjust `user` fn.
|
289 |
+
# For simplicity, let's assume `user` stores the raw dict if needed,
|
290 |
+
# or `bot` can parse `history[-1][0]` if it's a string/list of tuples.
|
291 |
+
|
292 |
+
# Let's assume `history[-1][0]` is the raw `user_multimodal_input_dict`
|
293 |
+
# This means the `user` function must append it like: `history.append([user_multimodal_input_dict, None])`
|
294 |
+
# And the chatbot will display `str(user_multimodal_input_dict)`.
|
295 |
+
# This is what the current `user` function does.
|
296 |
+
|
297 |
+
user_input_data = history[-1][0] # This should be the dict from MultimodalTextbox
|
298 |
+
text_input_for_agent = user_input_data.get("text", "")
|
299 |
+
# Files from MultimodalTextbox are temp file paths
|
300 |
+
image_file_paths_for_agent = [f.name for f in user_input_data.get("files", []) if hasattr(f, 'name')]
|
301 |
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
+
history[-1][1] = "" # Initialize assistant's part for streaming
|
304 |
|
305 |
+
# Buffer for current text stream from agent
|
306 |
+
# Handles both pure text deltas and text content from gr.ChatMessage
|
307 |
+
current_text_for_turn = ""
|
308 |
+
|
309 |
+
for item in respond(
|
310 |
+
message_text=text_input_for_agent,
|
311 |
+
image_file_paths=image_file_paths_for_agent,
|
312 |
+
gradio_history=history[:-1], # Pass previous turns for context if agent uses it
|
313 |
+
system_message_for_agent=system_msg,
|
314 |
+
max_tokens=max_tokens, temperature=temperature, top_p=top_p,
|
315 |
+
frequency_penalty=freq_penalty, seed=seed,
|
316 |
+
provider_for_agent_llm=provider, api_key_for_agent_llm=api_key,
|
317 |
+
model_id_for_agent_llm=custom_model,
|
318 |
+
model_search_term=search_term, # unused
|
319 |
+
selected_model_for_agent_llm=selected_model
|
320 |
):
|
321 |
+
if isinstance(item, str): # LLM text delta from agent's thought or textual answer
|
322 |
+
current_text_for_turn = item
|
323 |
+
history[-1][1] = current_text_for_turn
|
324 |
+
elif isinstance(item, gr.ChatMessage):
|
325 |
+
# This is a structured step (thought, tool output, image, etc.)
|
326 |
+
# We need to append this to the history as a new message or part of current message.
|
327 |
+
# For simplicity, let's append its string content to the current turn's assistant message.
|
328 |
+
# If it's an image/file, we'll represent it as a markdown link.
|
329 |
+
if isinstance(item.content, str):
|
330 |
+
current_text_for_turn = item.content # Replace if it's a full message
|
331 |
+
elif isinstance(item.content, dict) and "path" in item.content:
|
332 |
+
# This is typically an image or audio file
|
333 |
+
file_path = item.content["path"]
|
334 |
+
# We need to make this file accessible to Gradio if it's temporary from agent
|
335 |
+
# For now, just put a placeholder.
|
336 |
+
# If it's an output from a tool, the path might be relative to where smolagents saves it.
|
337 |
+
# Gradio needs an absolute path or a URL.
|
338 |
+
# A common pattern is to copy temp files to a static dir served by Gradio or use gr.File.
|
339 |
+
# For now, let's assume Gradio can handle local paths if they are in a folder it knows.
|
340 |
+
# We'll display it as a tuple for Gradio Chatbot.
|
341 |
+
# This means history[-1][1] needs to become a list.
|
342 |
+
|
343 |
+
# If current_text_for_turn is not empty, make history[-1][1] a list
|
344 |
+
if current_text_for_turn and not isinstance(history[-1][1], list):
|
345 |
+
history[-1][1] = [current_text_for_turn]
|
346 |
+
elif not current_text_for_turn and not isinstance(history[-1][1], list):
|
347 |
+
history[-1][1] = []
|
348 |
+
|
349 |
+
|
350 |
+
alt_text = item.metadata.get("title", os.path.basename(file_path)) if item.metadata else os.path.basename(file_path)
|
351 |
+
|
352 |
+
# Add as new component to the list for current assistant message
|
353 |
+
if isinstance(history[-1][1], list):
|
354 |
+
history[-1][1].append((file_path, alt_text))
|
355 |
+
else: # Should have been made a list above
|
356 |
+
history[-1][1] = [(file_path, alt_text)]
|
357 |
+
|
358 |
+
current_text_for_turn = "" # Reset text buffer after a file
|
359 |
+
|
360 |
+
# If it's not a delta, but a full message, replace the current text
|
361 |
+
if not isinstance(history[-1][1], list): # if it hasn't become a list due to file
|
362 |
+
history[-1][1] = current_text_for_turn
|
363 |
+
|
364 |
yield history
|
365 |
+
|
366 |
+
# Event handlers
|
367 |
+
# `msg.submit`'s first argument is the function to call.
|
368 |
+
# Its `inputs` are the Gradio components whose values are passed to the function.
|
369 |
+
# Its `outputs` are the Gradio components that are updated by the function's return value.
|
370 |
+
# The `user` function now appends the raw dict from MultimodalTextbox to history.
|
371 |
+
# The `bot` function takes this history.
|
372 |
+
|
373 |
+
# When msg is submitted:
|
374 |
+
# 1. Call `user` to update history with user's input. Output is `chatbot`.
|
375 |
+
# 2. Then call `bot` with the updated history. Output is `chatbot`.
|
376 |
+
# 3. Then clear `msg`
|
377 |
msg.submit(
|
378 |
user,
|
379 |
[msg, chatbot],
|
380 |
+
[chatbot], # `user` returns the new history, updating the chatbot display
|
381 |
queue=False
|
382 |
).then(
|
383 |
bot,
|
384 |
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
|
385 |
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
|
386 |
model_search_box, featured_model_radio],
|
387 |
+
[chatbot] # `bot` yields history updates, streaming to chatbot
|
388 |
).then(
|
389 |
+
lambda: {"text": "", "files": []}, # Clear MultimodalTextbox
|
390 |
None,
|
391 |
[msg]
|
392 |
)
|
393 |
|
394 |
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
|
|
|
|
|
395 |
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
|
|
|
|
396 |
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
397 |
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
398 |
|
399 |
print("Gradio interface initialized.")
|
400 |
|
401 |
if __name__ == "__main__":
|
402 |
print("Launching the demo application.")
|
403 |
+
demo.launch(show_api=False) # show_api=False for cleaner launch, True for API docs
|