|
|
|
|
|
from __future__ import annotations |
|
|
|
import os |
|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from diffusers import AutoencoderKL, StableDiffusionXLPipeline |
|
import uuid |
|
|
|
DESCRIPTION = '''# Segmind Stable Diffusion: SSD-1B |
|
#### [Segmind's SSD-1B](https://huggingface.co/segmind/SSD-1B) is a distilled, 50% smaller version of SDXL, offering up to 60% speedup |
|
''' |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "1") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
style_list = [ |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "Cinematic" |
|
|
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
|
|
if torch.cuda.is_available(): |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"segmind/SSD-1B", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16", |
|
) |
|
if ENABLE_REFINER: |
|
refiner = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-refiner-1.0", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16", |
|
) |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
if ENABLE_REFINER: |
|
refiner.enable_model_cpu_offload() |
|
else: |
|
pipe.to(device) |
|
if ENABLE_REFINER: |
|
refiner.to(device) |
|
print("Loaded on Device!") |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
if ENABLE_REFINER: |
|
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) |
|
print("Model Compiled!") |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + '.png' |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
style: str = DEFAULT_STYLE_NAME, |
|
prompt_2: str = "", |
|
negative_prompt_2: str = "", |
|
use_negative_prompt: bool = False, |
|
use_prompt_2: bool = False, |
|
use_negative_prompt_2: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale_base: float = 5.0, |
|
guidance_scale_refiner: float = 5.0, |
|
num_inference_steps_base: int = 25, |
|
num_inference_steps_refiner: int = 25, |
|
apply_refiner: bool = False, |
|
randomize_seed: bool = False, |
|
progress = gr.Progress(track_tqdm=True) |
|
): |
|
seed = randomize_seed_fn(seed, randomize_seed) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
if not use_prompt_2: |
|
prompt_2 = None |
|
if not use_negative_prompt_2: |
|
negative_prompt_2 = None |
|
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) |
|
if not apply_refiner: |
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale_base, |
|
num_inference_steps=num_inference_steps_base, |
|
generator=generator, |
|
output_type="pil", |
|
).images[0] |
|
else: |
|
latents = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale_base, |
|
num_inference_steps=num_inference_steps_base, |
|
generator=generator, |
|
output_type="latent", |
|
).images |
|
image = refiner( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
prompt_2=prompt_2, |
|
negative_prompt_2=negative_prompt_2, |
|
guidance_scale=guidance_scale_refiner, |
|
num_inference_steps=num_inference_steps_refiner, |
|
image=latents, |
|
generator=generator, |
|
).images[0] |
|
|
|
image_path = save_image(image) |
|
print(image_path) |
|
return [image_path], seed |
|
|
|
|
|
examples = ['3d digital art of an adorable ghost, glowing within, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background', 'beautiful lady, freckles, big smile, blue eyes, short ginger hair, dark makeup, wearing a floral blue vest top, soft light, dark grey background', 'professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.', 'an astronaut sitting in a diner, eating fries, cinematic, analog film', 'Albert Einstein in a surrealist Cyberpunk 2077 world, hyperrealistic', 'cinematic film still of Futuristic hero with golden dark armour with machine gun, muscular body'] |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", columns=1, show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) |
|
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) |
|
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) |
|
style_selection = gr.Radio( |
|
show_label=True, container=True, interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label='Image Style' |
|
) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
prompt_2 = gr.Text( |
|
label="Prompt 2", |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
visible=False, |
|
) |
|
negative_prompt_2 = gr.Text( |
|
label="Negative prompt 2", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=False): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) |
|
with gr.Row(): |
|
guidance_scale_base = gr.Slider( |
|
label="Guidance scale for base", |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=9.0, |
|
) |
|
num_inference_steps_base = gr.Slider( |
|
label="Number of inference steps for base", |
|
minimum=10, |
|
maximum=100, |
|
step=1, |
|
value=25, |
|
) |
|
with gr.Row(visible=False) as refiner_params: |
|
guidance_scale_refiner = gr.Slider( |
|
label="Guidance scale for refiner", |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
num_inference_steps_refiner = gr.Slider( |
|
label="Number of inference steps for refiner", |
|
minimum=10, |
|
maximum=100, |
|
step=1, |
|
value=25, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_prompt_2.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_prompt_2, |
|
outputs=prompt_2, |
|
queue=False, |
|
api_name=False, |
|
) |
|
use_negative_prompt_2.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt_2, |
|
outputs=negative_prompt_2, |
|
queue=False, |
|
api_name=False, |
|
) |
|
apply_refiner.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=apply_refiner, |
|
outputs=refiner_params, |
|
queue=False, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
prompt_2.submit, |
|
negative_prompt_2.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
style_selection, |
|
prompt_2, |
|
negative_prompt_2, |
|
use_negative_prompt, |
|
use_prompt_2, |
|
use_negative_prompt_2, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale_base, |
|
guidance_scale_refiner, |
|
num_inference_steps_base, |
|
num_inference_steps_refiner, |
|
apply_refiner, |
|
randomize_seed |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |