|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import torch as th |
|
from torch import nn |
|
|
|
|
|
class Shift(nn.Module): |
|
""" |
|
Randomly shift audio in time by up to `shift` samples. |
|
""" |
|
def __init__(self, shift=8192): |
|
super().__init__() |
|
self.shift = shift |
|
|
|
def forward(self, wav): |
|
batch, sources, channels, time = wav.size() |
|
length = time - self.shift |
|
if self.shift > 0: |
|
if not self.training: |
|
wav = wav[..., :length] |
|
else: |
|
offsets = th.randint(self.shift, [batch, sources, 1, 1], device=wav.device) |
|
offsets = offsets.expand(-1, -1, channels, -1) |
|
indexes = th.arange(length, device=wav.device) |
|
wav = wav.gather(3, indexes + offsets) |
|
return wav |
|
|
|
|
|
class FlipChannels(nn.Module): |
|
""" |
|
Flip left-right channels. |
|
""" |
|
def forward(self, wav): |
|
batch, sources, channels, time = wav.size() |
|
if self.training and wav.size(2) == 2: |
|
left = th.randint(2, (batch, sources, 1, 1), device=wav.device) |
|
left = left.expand(-1, -1, -1, time) |
|
right = 1 - left |
|
wav = th.cat([wav.gather(2, left), wav.gather(2, right)], dim=2) |
|
return wav |
|
|
|
|
|
class FlipSign(nn.Module): |
|
""" |
|
Random sign flip. |
|
""" |
|
def forward(self, wav): |
|
batch, sources, channels, time = wav.size() |
|
if self.training: |
|
signs = th.randint(2, (batch, sources, 1, 1), device=wav.device, dtype=th.float32) |
|
wav = wav * (2 * signs - 1) |
|
return wav |
|
|
|
|
|
class Remix(nn.Module): |
|
""" |
|
Shuffle sources to make new mixes. |
|
""" |
|
def __init__(self, group_size=4): |
|
""" |
|
Shuffle sources within one batch. |
|
Each batch is divided into groups of size `group_size` and shuffling is done within |
|
each group separatly. This allow to keep the same probability distribution no matter |
|
the number of GPUs. Without this grouping, using more GPUs would lead to a higher |
|
probability of keeping two sources from the same track together which can impact |
|
performance. |
|
""" |
|
super().__init__() |
|
self.group_size = group_size |
|
|
|
def forward(self, wav): |
|
batch, streams, channels, time = wav.size() |
|
device = wav.device |
|
|
|
if self.training: |
|
group_size = self.group_size or batch |
|
if batch % group_size != 0: |
|
raise ValueError(f"Batch size {batch} must be divisible by group size {group_size}") |
|
groups = batch // group_size |
|
wav = wav.view(groups, group_size, streams, channels, time) |
|
permutations = th.argsort(th.rand(groups, group_size, streams, 1, 1, device=device), |
|
dim=1) |
|
wav = wav.gather(1, permutations.expand(-1, -1, -1, channels, time)) |
|
wav = wav.view(batch, streams, channels, time) |
|
return wav |
|
|
|
|
|
class Scale(nn.Module): |
|
def __init__(self, proba=1., min=0.25, max=1.25): |
|
super().__init__() |
|
self.proba = proba |
|
self.min = min |
|
self.max = max |
|
|
|
def forward(self, wav): |
|
batch, streams, channels, time = wav.size() |
|
device = wav.device |
|
if self.training and random.random() < self.proba: |
|
scales = th.empty(batch, streams, 1, 1, device=device).uniform_(self.min, self.max) |
|
wav *= scales |
|
return wav |
|
|