Spaces:
Paused
Paused
MaziyarPanahi
commited on
Update app.py (#14)
Browse files- Update app.py (222ed92e2def4cc06102dfb624f32446cb93ebfb)
app.py
CHANGED
@@ -5,12 +5,30 @@ from qwen_vl_utils import process_vision_info
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import subprocess
|
|
|
|
|
8 |
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
9 |
|
10 |
# models = {
|
11 |
# "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
12 |
|
13 |
# }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
models = {
|
15 |
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
|
16 |
|
@@ -31,7 +49,9 @@ prompt_suffix = "<|end|>\n"
|
|
31 |
|
32 |
@spaces.GPU
|
33 |
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
|
34 |
-
|
|
|
|
|
35 |
model = models[model_id]
|
36 |
processor = processors[model_id]
|
37 |
|
@@ -43,7 +63,7 @@ def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
|
|
43 |
"content": [
|
44 |
{
|
45 |
"type": "image",
|
46 |
-
"image":
|
47 |
},
|
48 |
{"type": "text", "text": text_input},
|
49 |
],
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import subprocess
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
# subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
|
12 |
# models = {
|
13 |
# "Qwen/Qwen2-VL-2B-Instruct": AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
|
14 |
|
15 |
# }
|
16 |
+
def array_to_image_path(image_array):
|
17 |
+
# Convert numpy array to PIL Image
|
18 |
+
img = Image.fromarray(np.uint8(image_array))
|
19 |
+
|
20 |
+
# Generate a unique filename using timestamp
|
21 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
22 |
+
filename = f"image_{timestamp}.png"
|
23 |
+
|
24 |
+
# Save the image
|
25 |
+
img.save(filename)
|
26 |
+
|
27 |
+
# Get the full path of the saved image
|
28 |
+
full_path = os.path.abspath(filename)
|
29 |
+
|
30 |
+
return full_path
|
31 |
+
|
32 |
models = {
|
33 |
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
|
34 |
|
|
|
49 |
|
50 |
@spaces.GPU
|
51 |
def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
|
52 |
+
image_path = array_to_image_path(image)
|
53 |
+
|
54 |
+
print(image_path)
|
55 |
model = models[model_id]
|
56 |
processor = processors[model_id]
|
57 |
|
|
|
63 |
"content": [
|
64 |
{
|
65 |
"type": "image",
|
66 |
+
"image": image_path,
|
67 |
},
|
68 |
{"type": "text", "text": text_input},
|
69 |
],
|