Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,34 @@ from datasets import load_dataset
|
|
9 |
# Load pre-trained SentenceTransformer model
|
10 |
embedding_model = SentenceTransformer("thenlper/gte-large")
|
11 |
|
12 |
-
# Example dataset with genres (replace with your actual data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
dataset = load_dataset("hugginglearners/netflix-shows")
|
14 |
-
dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
|
15 |
-
data = dataset['train'] # Accessing the 'train' split of the dataset
|
16 |
|
17 |
-
# Convert the dataset to a list of dictionaries for easier indexing
|
18 |
-
data_list = list[data]
|
19 |
-
print(data_list)
|
20 |
# Combine description and genre for embedding
|
21 |
def combine_description_title_and_genre(description, listed_in, title):
|
22 |
return f"{description} Genre: {listed_in} Title: {title}"
|
@@ -29,25 +49,33 @@ def get_embedding(text):
|
|
29 |
def vector_search(query):
|
30 |
query_embedding = get_embedding(query)
|
31 |
|
32 |
-
#
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Calculate cosine similarity between the query and all embeddings
|
36 |
similarities = cosine_similarity([query_embedding], embeddings)
|
37 |
-
|
38 |
# # Adjust similarity scores based on ratings
|
39 |
# ratings = np.array([item["rating"] for item in data_list])
|
40 |
# adjusted_similarities = similarities * ratings.reshape(-1, 1)
|
41 |
|
42 |
-
|
43 |
top_n = 3
|
44 |
top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
|
45 |
-
top_items = [
|
46 |
|
47 |
# Format the output for display
|
48 |
search_result = ""
|
49 |
for item in top_items:
|
50 |
-
search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}
|
51 |
|
52 |
return search_result
|
53 |
|
|
|
9 |
# Load pre-trained SentenceTransformer model
|
10 |
embedding_model = SentenceTransformer("thenlper/gte-large")
|
11 |
|
12 |
+
# # Example dataset with genres (replace with your actual data)
|
13 |
+
# dataset = load_dataset("hugginglearners/netflix-shows")
|
14 |
+
# dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
|
15 |
+
# data = dataset['train'] # Accessing the 'train' split of the dataset
|
16 |
+
|
17 |
+
# # Convert the dataset to a list of dictionaries for easier indexing
|
18 |
+
# data_list = list[data]
|
19 |
+
# print(data_list)
|
20 |
+
# # Combine description and genre for embedding
|
21 |
+
# def combine_description_title_and_genre(description, listed_in, title):
|
22 |
+
# return f"{description} Genre: {listed_in} Title: {title}"
|
23 |
+
|
24 |
+
# # Generate embedding for the query
|
25 |
+
# def get_embedding(text):
|
26 |
+
# return embedding_model.encode(text)
|
27 |
+
|
28 |
+
# # Vector search function
|
29 |
+
# def vector_search(query):
|
30 |
+
# query_embedding = get_embedding(query)
|
31 |
+
|
32 |
+
# # Generate embeddings for the combined description and genre
|
33 |
+
# embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
|
34 |
+
|
35 |
+
# # Calculate cosine similarity between the query and all embeddings
|
36 |
+
# similarities = cosine_similarity([query_embedding], embeddings)
|
37 |
+
# Load dataset (using the correct dataset identifier for your case)
|
38 |
dataset = load_dataset("hugginglearners/netflix-shows")
|
|
|
|
|
39 |
|
|
|
|
|
|
|
40 |
# Combine description and genre for embedding
|
41 |
def combine_description_title_and_genre(description, listed_in, title):
|
42 |
return f"{description} Genre: {listed_in} Title: {title}"
|
|
|
49 |
def vector_search(query):
|
50 |
query_embedding = get_embedding(query)
|
51 |
|
52 |
+
# Function to generate embeddings for each item in the dataset
|
53 |
+
def generate_embeddings(example):
|
54 |
+
return {
|
55 |
+
'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
|
56 |
+
}
|
57 |
+
|
58 |
+
# Generate embeddings for the dataset using map
|
59 |
+
embeddings_dataset = dataset["train"].map(generate_embeddings)
|
60 |
+
|
61 |
+
# Extract embeddings
|
62 |
+
embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
|
63 |
|
64 |
# Calculate cosine similarity between the query and all embeddings
|
65 |
similarities = cosine_similarity([query_embedding], embeddings)
|
|
|
66 |
# # Adjust similarity scores based on ratings
|
67 |
# ratings = np.array([item["rating"] for item in data_list])
|
68 |
# adjusted_similarities = similarities * ratings.reshape(-1, 1)
|
69 |
|
70 |
+
# Get top N most similar items (e.g., top 3)
|
71 |
top_n = 3
|
72 |
top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
|
73 |
+
top_items = [dataset["train"][i] for i in top_indices]
|
74 |
|
75 |
# Format the output for display
|
76 |
search_result = ""
|
77 |
for item in top_items:
|
78 |
+
search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
|
79 |
|
80 |
return search_result
|
81 |
|