|
import argparse |
|
import os |
|
|
|
from Preprocessing.multilinguality.create_distance_lookups import CacheCreator |
|
from Preprocessing.multilinguality.create_lang_dist_dataset import LangDistDatasetCreator |
|
from Preprocessing.multilinguality.generate_zero_shot_lang_embs import approximate_and_inject_language_embeddings |
|
from Utility.storage_config import MODELS_DIR |
|
|
|
if __name__ == "__main__": |
|
default_model_path = os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt") |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_path", "-m", type=str, default=default_model_path, help="model path from which to obtain pretrained language embeddings") |
|
parser.add_argument("--distance_type", "-d", type=str, choices=["map", "tree", "asp", "learned", "combined"], default="learned", |
|
help="which type of distance to use for finding nearest languages") |
|
parser.add_argument("--n_closest", "-k", type=int, default=50, help="how many nearest languages to select for language embedding approximation") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
cc = CacheCreator(cache_root="Preprocessing/multilinguality") |
|
cc.create_required_files(model_path=os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt")) |
|
|
|
|
|
dc = LangDistDatasetCreator(args.model_path, cache_root="Preprocessing/multilinguality") |
|
distance_dataset = dc.create_dataset(args.distance_type, n_closest=args.n_closest, zero_shot=True) |
|
|
|
|
|
approximate_and_inject_language_embeddings(model_path=args.model_path, |
|
df=distance_dataset, |
|
iso_lookup=dc.iso_lookup) |
|
|