BestWishYsh commited on
Commit
3adb503
1 Parent(s): 32a13ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -11
app.py CHANGED
@@ -15,7 +15,7 @@ from utils.unet import UNet3DConditionModel
15
  from utils.pipeline_magictime import MagicTimePipeline
16
  from utils.util import save_videos_grid, convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint, load_diffusers_lora_unet, convert_ldm_clip_text_model
17
 
18
- pretrained_model_path = "runwayml/stable-diffusion-v1-5"
19
  inference_config_path = "./sample_configs/RealisticVision.yaml"
20
  magic_adapter_s_path = "./ckpts/Magic_Weights/magic_adapter_s/magic_adapter_s.ckpt"
21
  magic_adapter_t_path = "./ckpts/Magic_Weights/magic_adapter_t"
@@ -63,7 +63,7 @@ os.system(f"rm -rf gradio_cached_examples/")
63
 
64
 
65
  class MagicTimeController:
66
- def __init__(self):
67
 
68
  # config dirs
69
  self.basedir = os.getcwd()
@@ -85,13 +85,18 @@ class MagicTimeController:
85
  # config models
86
  self.inference_config = OmegaConf.load(inference_config_path)[1]
87
 
88
- self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
89
- self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").to('cuda')
90
- self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to('cuda')
91
- self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).to('cuda')
92
-
93
- self.text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
94
-
 
 
 
 
 
95
  self.update_motion_module(self.motion_module_list[0])
96
  self.update_dreambooth(self.dreambooth_list[0])
97
 
@@ -191,9 +196,14 @@ class MagicTimeController:
191
  "dreambooth": dreambooth_dropdown,
192
  }
193
  return gr.Video(value=save_sample_path), gr.Json(value=json_config)
194
-
195
- controller = MagicTimeController()
196
 
 
 
 
 
 
 
 
197
 
198
  def ui():
199
  with gr.Blocks(css=css) as demo:
 
15
  from utils.pipeline_magictime import MagicTimePipeline
16
  from utils.util import save_videos_grid, convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint, load_diffusers_lora_unet, convert_ldm_clip_text_model
17
 
18
+ pretrained_model_path = "./ckpts/Base_Model/stable-diffusion-v1-5"
19
  inference_config_path = "./sample_configs/RealisticVision.yaml"
20
  magic_adapter_s_path = "./ckpts/Magic_Weights/magic_adapter_s/magic_adapter_s.ckpt"
21
  magic_adapter_t_path = "./ckpts/Magic_Weights/magic_adapter_t"
 
63
 
64
 
65
  class MagicTimeController:
66
+ def __init__(self, tokenizer, text_encoder, vae, unet, text_model):
67
 
68
  # config dirs
69
  self.basedir = os.getcwd()
 
85
  # config models
86
  self.inference_config = OmegaConf.load(inference_config_path)[1]
87
 
88
+ # self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
89
+ # self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
90
+ # self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
91
+ # self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
92
+ # self.text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
93
+
94
+ self.tokenizer = tokenizer
95
+ self.text_encoder = text_encoder
96
+ self.vae = vae
97
+ self.unet = unet
98
+ self.text_model = text_model
99
+
100
  self.update_motion_module(self.motion_module_list[0])
101
  self.update_dreambooth(self.dreambooth_list[0])
102
 
 
196
  "dreambooth": dreambooth_dropdown,
197
  }
198
  return gr.Video(value=save_sample_path), gr.Json(value=json_config)
 
 
199
 
200
+ inference_config = OmegaConf.load(inference_config_path)[1]
201
+ tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
202
+ text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
203
+ vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
204
+ unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)).cuda()
205
+ text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
206
+ controller = MagicTimeController(tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, unet=unet, text_model=text_model)
207
 
208
  def ui():
209
  with gr.Blocks(css=css) as demo: