|
|
|
|
|
|
|
|
|
"""Video models.""" |
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange, repeat |
|
from timm.layers import to_2tuple |
|
from torch import einsum |
|
from torch.nn import functional as F |
|
|
|
default_cfgs = { |
|
'vit_1k': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', |
|
'vit_1k_large': |
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', |
|
} |
|
|
|
|
|
def qkv_attn(q, k, v, tok_mask: torch.Tensor = None): |
|
sim = einsum('b i d, b j d -> b i j', q, k) |
|
|
|
if tok_mask is not None: |
|
BSH, N = tok_mask.shape |
|
sim = sim.masked_fill(tok_mask.view(BSH, 1, N) == 0, |
|
float('-inf')) |
|
attn = sim.softmax(dim=-1) |
|
out = einsum('b i j, b j d -> b i d', attn, v) |
|
return out |
|
|
|
|
|
class DividedAttention(nn.Module): |
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
|
|
self.qkv.weight.data.fill_(0) |
|
self.qkv.bias.data.fill_(0) |
|
self.proj.weight.data.fill_(1) |
|
self.proj.bias.data.fill_(0) |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, einops_from, einops_to, tok_mask: torch.Tensor = None, **einops_dims): |
|
|
|
h = self.num_heads |
|
|
|
|
|
q, k, v = self.qkv(x).chunk(3, dim=-1) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) |
|
if tok_mask is not None: |
|
|
|
assert len(tok_mask.shape) == 2 |
|
tok_mask = tok_mask.unsqueeze(1).expand(-1, h, -1).reshape(-1, tok_mask.shape[1]) |
|
|
|
|
|
q *= self.scale |
|
|
|
|
|
(cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:1], t[:, 1:]), (q, k, v)) |
|
|
|
if tok_mask is not None: |
|
cls_mask, mask_ = tok_mask[:, 0:1], tok_mask[:, 1:] |
|
else: |
|
cls_mask, mask_ = None, None |
|
|
|
|
|
cls_out = qkv_attn(cls_q, k, v, tok_mask=tok_mask) |
|
|
|
|
|
q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims), |
|
(q_, k_, v_)) |
|
|
|
|
|
r = q_.shape[0] // cls_k.shape[0] |
|
cls_k, cls_v = map(lambda t: repeat(t, 'b () d -> (b r) () d', r=r), (cls_k, cls_v)) |
|
|
|
k_ = torch.cat((cls_k, k_), dim=1) |
|
v_ = torch.cat((cls_v, v_), dim=1) |
|
|
|
|
|
if tok_mask is not None: |
|
|
|
mask_ = rearrange(mask_, f'{einops_from} -> {einops_to}'.replace(' d', ''), |
|
**einops_dims) |
|
cls_mask = repeat(cls_mask, 'b () -> (b r) ()', |
|
r=r) |
|
mask_ = torch.cat((cls_mask, mask_), dim=1) |
|
|
|
|
|
out = qkv_attn(q_, k_, v_, tok_mask=mask_) |
|
|
|
|
|
out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims) |
|
|
|
|
|
out = torch.cat((cls_out, out), dim=1) |
|
|
|
|
|
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) |
|
|
|
|
|
x = self.proj(out) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class DividedSpaceTimeBlock(nn.Module): |
|
|
|
def __init__(self, |
|
dim=768, |
|
num_heads=12, |
|
attn_type='divided', |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
|
|
self.einops_from_space = 'b (f n) d' |
|
self.einops_to_space = '(b f) n d' |
|
self.einops_from_time = 'b (f n) d' |
|
self.einops_to_time = '(b n) f d' |
|
|
|
self.norm1 = norm_layer(dim) |
|
|
|
self.attn = DividedAttention(dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.timeattn = DividedAttention(dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
|
|
self.drop_path = nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
self.norm3 = norm_layer(dim) |
|
|
|
def forward(self, |
|
x, |
|
seq_len=196, |
|
num_frames=8, |
|
approx='none', |
|
num_landmarks=128, |
|
tok_mask: torch.Tensor = None): |
|
time_output = self.timeattn(self.norm3(x), |
|
self.einops_from_time, |
|
self.einops_to_time, |
|
n=seq_len, |
|
tok_mask=tok_mask) |
|
time_residual = x + time_output |
|
|
|
space_output = self.attn(self.norm1(time_residual), |
|
self.einops_from_space, |
|
self.einops_to_space, |
|
f=num_frames, |
|
tok_mask=tok_mask) |
|
space_residual = time_residual + self.drop_path(space_output) |
|
|
|
x = space_residual |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class Mlp(nn.Module): |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = img_size if type(img_size) is tuple else to_2tuple(img_size) |
|
patch_size = img_size if type(patch_size) is tuple else to_2tuple(patch_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class PatchEmbed3D(nn.Module): |
|
""" Image to Patch Embedding """ |
|
|
|
def __init__(self, |
|
img_size=224, |
|
temporal_resolution=4, |
|
in_chans=3, |
|
patch_size=16, |
|
z_block_size=2, |
|
embed_dim=768, |
|
flatten=True): |
|
super().__init__() |
|
self.height = (img_size // patch_size) |
|
self.width = (img_size // patch_size) |
|
|
|
|
|
|
|
self.z_block_size = z_block_size |
|
|
|
self.proj = nn.Conv3d(in_chans, |
|
embed_dim, |
|
kernel_size=(z_block_size, patch_size, patch_size), |
|
stride=(z_block_size, patch_size, patch_size)) |
|
self.flatten = flatten |
|
|
|
def forward(self, x): |
|
B, C, T, H, W = x.shape |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
class HeadMLP(nn.Module): |
|
|
|
def __init__(self, n_input, n_classes, n_hidden=512, p=0.1): |
|
super(HeadMLP, self).__init__() |
|
self.n_input = n_input |
|
self.n_classes = n_classes |
|
self.n_hidden = n_hidden |
|
if n_hidden is None: |
|
|
|
self.block_forward = nn.Sequential(nn.Dropout(p=p), |
|
nn.Linear(n_input, n_classes, bias=True)) |
|
else: |
|
|
|
self.block_forward = nn.Sequential(nn.Dropout(p=p), |
|
nn.Linear(n_input, n_hidden, bias=True), |
|
nn.BatchNorm1d(n_hidden), nn.ReLU(inplace=True), |
|
nn.Dropout(p=p), |
|
nn.Linear(n_hidden, n_classes, bias=True)) |
|
print(f"Dropout-NLP: {p}") |
|
|
|
def forward(self, x): |
|
return self.block_forward(x) |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def adapt_input_conv(in_chans, conv_weight, agg='sum'): |
|
conv_type = conv_weight.dtype |
|
conv_weight = conv_weight.float() |
|
O, I, J, K = conv_weight.shape |
|
if in_chans == 1: |
|
if I > 3: |
|
assert conv_weight.shape[1] % 3 == 0 |
|
|
|
conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) |
|
conv_weight = conv_weight.sum(dim=2, keepdim=False) |
|
else: |
|
if agg == 'sum': |
|
print("Summing conv1 weights") |
|
conv_weight = conv_weight.sum(dim=1, keepdim=True) |
|
else: |
|
print("Averaging conv1 weights") |
|
conv_weight = conv_weight.mean(dim=1, keepdim=True) |
|
elif in_chans != 3: |
|
if I != 3: |
|
raise NotImplementedError('Weight format not supported by conversion.') |
|
else: |
|
if agg == 'sum': |
|
print("Summing conv1 weights") |
|
repeat = int(math.ceil(in_chans / 3)) |
|
conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] |
|
conv_weight *= (3 / float(in_chans)) |
|
else: |
|
print("Averaging conv1 weights") |
|
conv_weight = conv_weight.mean(dim=1, keepdim=True) |
|
conv_weight = conv_weight.repeat(1, in_chans, 1, 1) |
|
conv_weight = conv_weight.to(conv_type) |
|
return conv_weight |
|
|
|
|
|
def load_pretrained(model, |
|
cfg=None, |
|
num_classes=1000, |
|
in_chans=3, |
|
filter_fn=None, |
|
strict=True, |
|
progress=False): |
|
|
|
assert (f"{cfg.VIT.PRETRAINED_WEIGHTS} not in [vit_1k, vit_1k_large]") |
|
state_dict = torch.hub.load_state_dict_from_url(url=default_cfgs[cfg.VIT.PRETRAINED_WEIGHTS]) |
|
|
|
if filter_fn is not None: |
|
state_dict = filter_fn(state_dict) |
|
|
|
input_convs = 'patch_embed.proj' |
|
if input_convs is not None and in_chans != 3: |
|
if isinstance(input_convs, str): |
|
input_convs = (input_convs, ) |
|
for input_conv_name in input_convs: |
|
weight_name = input_conv_name + '.weight' |
|
try: |
|
state_dict[weight_name] = adapt_input_conv(in_chans, |
|
state_dict[weight_name], |
|
agg='avg') |
|
print( |
|
f'Converted input conv {input_conv_name} pretrained weights from 3 to {in_chans} channel(s)' |
|
) |
|
except NotImplementedError as e: |
|
del state_dict[weight_name] |
|
strict = False |
|
print( |
|
f'Unable to convert pretrained {input_conv_name} weights, using random init for this layer.' |
|
) |
|
|
|
classifier_name = 'head' |
|
label_offset = cfg.get('label_offset', 0) |
|
pretrain_classes = 1000 |
|
if num_classes != pretrain_classes: |
|
|
|
del state_dict[classifier_name + '.weight'] |
|
del state_dict[classifier_name + '.bias'] |
|
strict = False |
|
elif label_offset > 0: |
|
|
|
classifier_weight = state_dict[classifier_name + '.weight'] |
|
state_dict[classifier_name + '.weight'] = classifier_weight[label_offset:] |
|
classifier_bias = state_dict[classifier_name + '.bias'] |
|
state_dict[classifier_name + '.bias'] = classifier_bias[label_offset:] |
|
|
|
loaded_state = state_dict |
|
self_state = model.state_dict() |
|
all_names = set(self_state.keys()) |
|
saved_names = set([]) |
|
for name, param in loaded_state.items(): |
|
param = param |
|
if 'module.' in name: |
|
name = name.replace('module.', '') |
|
if name in self_state.keys() and param.shape == self_state[name].shape: |
|
saved_names.add(name) |
|
self_state[name].copy_(param) |
|
else: |
|
print(f"didnt load: {name} of shape: {param.shape}") |
|
print("Missing Keys:") |
|
print(all_names - saved_names) |
|
|