|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
class DiagonalGaussianDistribution: |
|
|
|
def __init__(self, parameters, deterministic=False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) |
|
|
|
def sample(self, rng: Optional[torch.Generator] = None): |
|
|
|
|
|
r = torch.empty_like(self.mean).normal_(generator=rng) |
|
x = self.mean + self.std * r |
|
|
|
return x |
|
|
|
def kl(self, other=None): |
|
if self.deterministic: |
|
return torch.Tensor([0.]) |
|
else: |
|
if other is None: |
|
|
|
return 0.5 * torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar |
|
else: |
|
return 0.5 * (torch.pow(self.mean - other.mean, 2) / other.var + |
|
self.var / other.var - 1.0 - self.logvar + other.logvar) |
|
|
|
def nll(self, sample, dims=[1, 2, 3]): |
|
if self.deterministic: |
|
return torch.Tensor([0.]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, |
|
dim=dims) |
|
|
|
def mode(self): |
|
return self.mean |
|
|