Spaces:
Paused
Paused
import os | |
import shutil | |
import subprocess | |
import sys | |
import signal | |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
import gradio as gr | |
import huggingface_hub | |
from huggingface_hub import HfApi | |
from huggingface_hub import ModelCard | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from textwrap import dedent | |
HF_PATH = "https://huggingface.co/" | |
CONV_TEMPLATES = [ | |
"llama-3", | |
"llama-3_1", | |
"chatml", | |
"chatml_nosystem", | |
"qwen2", | |
"open_hermes_mistral", | |
"neural_hermes_mistral", | |
"llama_default", | |
"llama-2", | |
"mistral_default", | |
"gpt2", | |
"codellama_completion", | |
"codellama_instruct", | |
"vicuna_v1.1", | |
"conv_one_shot", | |
"redpajama_chat", | |
"rwkv_world", | |
"rwkv", | |
"gorilla", | |
"gorilla-openfunctions-v2", | |
"guanaco", | |
"dolly", | |
"oasst", | |
"stablelm", | |
"stablecode_completion", | |
"stablecode_instruct", | |
"minigpt", | |
"moss", | |
"LM", | |
"stablelm-3b", | |
"gpt_bigcode", | |
"wizardlm_7b", | |
"wizard_coder_or_math", | |
"glm", | |
"custom", # for web-llm only | |
"phi-2", | |
"phi-3", | |
"phi-3-vision", | |
"stablelm-2", | |
"gemma_instruction", | |
"orion", | |
"llava", | |
"hermes2_pro_llama3", | |
"hermes3_llama-3_1", | |
"tinyllama_v1_0", | |
"aya-23", | |
] | |
QUANTIZATIONS = ["q0f16", | |
"q0f32", | |
"q3f16_1", | |
"q4f16_1", | |
"q4f32_1", | |
"q4f16_awq"] | |
SUPPORTED_MODEL_TYPES = ['llama', | |
'mistral', | |
'gemma', | |
'gemma2', | |
'gpt2', | |
'mixtral', | |
'gpt_neox', | |
'gpt_bigcode', | |
'phi-msft', | |
'phi', | |
'phi3', | |
'phi3_v', | |
'qwen', | |
'qwen2', | |
'qwen2_moe', | |
'stablelm', | |
'baichuan', | |
'internlm', | |
'internlm2', | |
'rwkv5', | |
'orion', | |
'llava', | |
'rwkv6', | |
'chatglm', | |
'eagle', | |
'bert', | |
'medusa', | |
'starcoder2', | |
'cohere', | |
'minicpm'] | |
readme_template = """ | |
--- | |
library_name: mlc-llm | |
base_model: {base_model} | |
tags: | |
- mlc-llm | |
- web-llm | |
--- | |
# {model_name} | |
This is the [{base_model_name}](https://huggingface.co/{base_model}) model in MLC format `{quant_format}`. | |
The conversion was done using the [MLC-Weight-Conversion](https://huggingface.co/spaces/mlc-ai/MLC-Weight-Conversion) space. | |
The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). | |
## Example Usage | |
Here are some examples of using this model in MLC LLM. | |
Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). | |
### Chat | |
In command line, run | |
```bash | |
mlc_llm chat HF://mlc-ai/{model_name} | |
``` | |
### REST Server | |
In command line, run | |
```bash | |
mlc_llm serve HF://mlc-ai/{model_name} | |
``` | |
### Python API | |
```python | |
from mlc_llm import MLCEngine | |
# Create engine | |
model = "HF://mlc-ai/{model_name}" | |
engine = MLCEngine(model) | |
# Run chat completion in OpenAI API. | |
for response in engine.chat.completions.create( | |
messages=[{{"role": "user", "content": "What is the meaning of life?"}}], | |
model=model, | |
stream=True, | |
): | |
for choice in response.choices: | |
print(choice.delta.content, end="", flush=True) | |
print("\\n") | |
engine.terminate() | |
``` | |
## Documentation | |
For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm). | |
""".strip() | |
def button_click(hf_model_id, conv_template, quantization, oauth_token: gr.OAuthToken | None, progress=gr.Progress()): | |
if oauth_token.token is None: | |
return "Log in to Huggingface to use this" | |
elif not hf_model_id: | |
return "Enter a Huggingface model ID" | |
elif not conv_template: | |
return "Select a conversation template" | |
elif not quantization: | |
return "Select a quantization method" | |
progress(0, desc="Verifying inputs...") | |
api = HfApi(token=oauth_token.token) | |
model_dir_name = hf_model_id.split("/")[1] | |
mlc_model_name = model_dir_name + "-" + quantization + "-" + "MLC" | |
os.system("mkdir -p dist/models") | |
os.system("git lfs install") | |
model_info = api.repo_info(hf_model_id) | |
if type(model_info) != huggingface_hub.hf_api.ModelInfo: | |
os.system("rm -rf dist/") | |
return "Entered Huggingface model ID is not a model repository" | |
if "model_type" not in model_info.config: | |
os.system("rm -rf dist/") | |
return "Cannot infer model type from config file" | |
if model_info.config['model_type'] not in SUPPORTED_MODEL_TYPES: | |
os.system("rm -rf dist/") | |
return f"Model type ({model_info.config['model_type']}) currently not supported by MLC-LLM" | |
progress(0.1, desc="Downloading weights from Huggingface...") | |
try: | |
api.snapshot_download(repo_id=hf_model_id, local_dir=f"./dist/models/{model_dir_name}") | |
except BaseException as error: | |
os.system("rm -rf dist/") | |
return error | |
progress(0.5, desc="Converting weight to MLC") | |
convert_weight_result = subprocess.run(["mlc_llm convert_weight ./dist/models/" + model_dir_name + "/" + \ | |
" --quantization " + quantization + \ | |
" -o dist/" + mlc_model_name], shell=True, capture_output=True, text=True) | |
if convert_weight_result.returncode != 0: | |
os.system("rm -rf dist/") | |
return convert_weight_result.stderr | |
progress(0.8, desc="Generating config...") | |
gen_config_result = subprocess.run(["mlc_llm gen_config ./dist/models/" + model_dir_name + "/" + \ | |
" --quantization " + quantization + " --conv-template " + conv_template + \ | |
" -o dist/" + mlc_model_name + "/"], shell=True, capture_output=True, text=True) | |
if gen_config_result.returncode != 0: | |
os.system("rm -rf dist/") | |
return gen_config_result.stderr | |
progress(0.9, desc="Creating your Huggingface repo...") | |
# push to HF | |
user_name = api.whoami()["name"] | |
created_repo_url = api.create_repo(repo_id=f"{user_name}/{mlc_model_name}", private=False) # set public | |
created_repo_id = created_repo_url.repo_id | |
api.upload_large_folder(folder_path=f"./dist/{mlc_model_name}", | |
repo_id=f"{user_name}/{mlc_model_name}", | |
repo_type="model") | |
# push model card to HF | |
card = ModelCard.load(hf_model_id, token=oauth_token.token) | |
if not card.data.tags: | |
card.data.tags = [] | |
card.data.tags.append("mlc-ai") | |
card.data.tags.append("MLC-Weight-Conversion") | |
card.data.base_model = hf_model_id | |
card.text = readme_template.format( | |
model_name=f"{user_name}/{mlc_model_name}", | |
base_model=hf_model_id, | |
base_model_name=model_dir_name, | |
quant_format=quantization, | |
) | |
card.save("./dist/README.md") | |
api.upload_file(path_or_fileobj="./dist/README.md", | |
path_in_repo="README.md", | |
repo_id=created_repo_id, | |
repo_type="model") | |
os.system("rm -rf dist/") | |
return "Successful, please find your compiled LLM model on your personal account" | |
def clean(): | |
os.system("rm -rf dist/") | |
def restart_space(): | |
HfApi().restart_space(repo_id="mlc-ai/MLC-Weight-Conversion", token=os.environ.get("HF_TOKEN"), factory_reboot=True) | |
with gr.Blocks() as demo: | |
gr.LoginButton() | |
gr.Markdown( | |
""" | |
# Compile your LLM model with MLC-LLM and run it locally! | |
### This space takes in Huggingface model ID, and converts it for you using your selected conversation template and quantization method! | |
""") | |
model_id = HuggingfaceHubSearch( | |
label="HF Model ID", | |
placeholder="Search for your model on Huggingface", | |
search_type="model", | |
) | |
conv = gr.Dropdown(CONV_TEMPLATES, label="Conversation Template") | |
quant = gr.Dropdown(QUANTIZATIONS, label="Quantization Method", info="The format of the code is qAfB(_id), where A represents the number of bits for storing weights and B represents the number of bits for storing activations. The _id is an integer identifier to distinguish different quantization algorithms (e.g. symmetric, non-symmetric, AWQ, etc).") | |
btn = gr.Button("Convert to MLC") | |
btn2 = gr.Button("Cancel Conversion") | |
out = gr.Textbox(label="Conversion Result") | |
click_event = btn.click(fn=button_click , inputs=[model_id, conv, quant], outputs=out) | |
btn2.click(fn=None, inputs=None, outputs=None, cancels=[click_event], js="window.location.reload()") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(clean, "interval", seconds=21600) | |
scheduler.add_job(restart_space, "interval", seconds=86400) | |
scheduler.start() | |
demo.queue(max_size=5).launch() |