|
import argparse |
|
import torch |
|
import os |
|
import json |
|
from tqdm import tqdm |
|
import shortuuid |
|
|
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.builder import load_pretrained_model |
|
from llava.utils import disable_torch_init |
|
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
from PIL import Image |
|
import math |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
def eval_model(args): |
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(args.model_path) |
|
model_name = get_model_name_from_path(model_path) |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) |
|
|
|
questions = json.load(open(os.path.expanduser(args.question_file), "r")) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
answers_file = os.path.expanduser(args.answers_file) |
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True) |
|
ans_file = open(answers_file, "w") |
|
for i, line in enumerate(tqdm(questions)): |
|
idx = line["id"] |
|
question = line['conversations'][0] |
|
qs = question['value'].replace('<image>', '').strip() |
|
cur_prompt = qs |
|
|
|
if 'image' in line: |
|
image_file = line["image"] |
|
image = Image.open(os.path.join(args.image_folder, image_file)) |
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] |
|
images = image_tensor.unsqueeze(0).half().cuda() |
|
if getattr(model.config, 'mm_use_im_start_end', False): |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
cur_prompt = '<image>' + '\n' + cur_prompt |
|
else: |
|
images = None |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = [KeywordsStoppingCriteria(keywords, tokenizer, input_ids)] if conv.version == "v0" else None |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images, |
|
do_sample=True, |
|
temperature=0.2, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=stopping_criteria, |
|
) |
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
|
|
if args.answer_prompter: |
|
outputs_reasoning = outputs |
|
input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' ###\nANSWER:', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images, |
|
do_sample=True, |
|
temperature=0.2, |
|
max_new_tokens=64, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
outputs = outputs_reasoning + '\n The answer is ' + outputs |
|
|
|
ans_id = shortuuid.uuid() |
|
ans_file.write(json.dumps({"question_id": idx, |
|
"prompt": cur_prompt, |
|
"text": outputs, |
|
"answer_id": ans_id, |
|
"model_id": model_name, |
|
"metadata": {}}) + "\n") |
|
ans_file.flush() |
|
ans_file.close() |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-folder", type=str, default="") |
|
parser.add_argument("--question-file", type=str, default="tables/question.json") |
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl") |
|
parser.add_argument("--conv-mode", type=str, default="llava_v0") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--answer-prompter", action="store_true") |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |
|
|