Spaces:
Nymbo
/
Runtime error

LLaVA / llava /eval /model_qa.py
badayvedat's picture
feat: Add LLaVA model
a824a18
raw
history blame
3.29 kB
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from llava.conversation import default_conversation
from llava.utils import disable_torch_init
# new stopping implementation
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.tokenizer = tokenizer
self.start_len = None
self.input_ids = input_ids
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if self.start_len is None:
self.start_len = self.input_ids.shape[1]
else:
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
@torch.inference_mode()
def eval_model(model_name, questions_file, answers_file):
# Model
disable_torch_init()
model_name = os.path.expanduser(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.float16).cuda()
ques_file = open(os.path.expanduser(questions_file), "r")
ans_file = open(os.path.expanduser(answers_file), "w")
for i, line in enumerate(tqdm(ques_file)):
idx = json.loads(line)["question_id"]
qs = json.loads(line)["text"]
cat = json.loads(line)["category"]
conv = default_conversation.copy()
conv.append_message(conv.roles[0], qs)
prompt = conv.get_prompt()
inputs = tokenizer([prompt])
input_ids = torch.as_tensor(inputs.input_ids).cuda()
stopping_criteria = KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids)
output_ids = model.generate(
input_ids,
do_sample=True,
use_cache=True,
temperature=0.7,
max_new_tokens=1024,
stopping_criteria=[stopping_criteria])
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
try:
index = outputs.index(conv.sep, len(prompt))
except ValueError:
outputs += conv.sep
index = outputs.index(conv.sep, len(prompt))
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
args = parser.parse_args()
eval_model(args.model_name, args.question_file, args.answers_file)