Spaces:
Sleeping
Sleeping
# ------------------------------------------------------------------------ | |
# Copyright (c) 2022 megvii-model. All Rights Reserved. | |
# ------------------------------------------------------------------------ | |
# Source: https://github.com/megvii-research/NAFNet | |
''' | |
Simple Baselines for Image Restoration | |
@article{chen2022simple, | |
title={Simple Baselines for Image Restoration}, | |
author={Chen, Liangyu and Chu, Xiaojie and Zhang, Xiangyu and Sun, Jian}, | |
journal={arXiv preprint arXiv:2204.04676}, | |
year={2022} | |
} | |
''' | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import init as init | |
from torch.nn.modules.batchnorm import _BatchNorm | |
from models.nafnet_utils import Local_Base, LayerNorm2d | |
class SimpleGate(nn.Module): | |
def forward(self, x): | |
x1, x2 = x.chunk(2, dim=1) | |
return x1 * x2 | |
class NAFBlock(nn.Module): | |
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): | |
super().__init__() | |
dw_channel = c * DW_Expand | |
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, | |
bias=True) | |
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
# Simplified Channel Attention | |
self.sca = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, | |
groups=1, bias=True), | |
) | |
# SimpleGate | |
self.sg = SimpleGate() | |
ffn_channel = FFN_Expand * c | |
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) | |
self.norm1 = LayerNorm2d(c) | |
self.norm2 = LayerNorm2d(c) | |
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() | |
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() | |
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | |
def forward(self, inp): | |
x = inp | |
x = self.norm1(x) | |
x = self.conv1(x) | |
x = self.conv2(x) | |
x = self.sg(x) | |
x = x * self.sca(x) | |
x = self.conv3(x) | |
x = self.dropout1(x) | |
y = inp + x * self.beta | |
x = self.conv4(self.norm2(y)) | |
x = self.sg(x) | |
x = self.conv5(x) | |
x = self.dropout2(x) | |
return y + x * self.gamma | |
class NAFNet(nn.Module): | |
def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[]): | |
super().__init__() | |
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, | |
bias=True) | |
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, | |
bias=True) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
self.middle_blks = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
self.downs = nn.ModuleList() | |
chan = width | |
for num in enc_blk_nums: | |
self.encoders.append( | |
nn.Sequential( | |
*[NAFBlock(chan) for _ in range(num)] | |
) | |
) | |
self.downs.append( | |
nn.Conv2d(chan, 2*chan, 2, 2) | |
) | |
chan = chan * 2 | |
self.middle_blks = \ | |
nn.Sequential( | |
*[NAFBlock(chan) for _ in range(middle_blk_num)] | |
) | |
for num in dec_blk_nums: | |
self.ups.append( | |
nn.Sequential( | |
nn.Conv2d(chan, chan * 2, 1, bias=False), | |
nn.PixelShuffle(2) | |
) | |
) | |
chan = chan // 2 | |
self.decoders.append( | |
nn.Sequential( | |
*[NAFBlock(chan) for _ in range(num)] | |
) | |
) | |
self.padder_size = 2 ** len(self.encoders) | |
def forward(self, inp): | |
B, C, H, W = inp.shape | |
inp = self.check_image_size(inp) | |
x = self.intro(inp) | |
encs = [] | |
for encoder, down in zip(self.encoders, self.downs): | |
x = encoder(x) | |
encs.append(x) | |
x = down(x) | |
x = self.middle_blks(x) | |
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): | |
x = up(x) | |
x = x + enc_skip | |
x = decoder(x) | |
x = self.ending(x) | |
x = x + inp | |
return x[:, :, :H, :W] | |
def check_image_size(self, x): | |
_, _, h, w = x.size() | |
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size | |
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) | |
return x | |
class NAFNetLocal(Local_Base, NAFNet): | |
def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs): | |
Local_Base.__init__(self) | |
NAFNet.__init__(self, *args, **kwargs) | |
N, C, H, W = train_size | |
base_size = (int(H * 1.5), int(W * 1.5)) | |
self.eval() | |
with torch.no_grad(): | |
self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp) | |
def create_nafnet(input_channels = 3, width = 32, enc_blks = [2, 2, 4, 8], middle_blk_num = 12, dec_blks = [2, 2, 2, 2]): | |
""" | |
Create Nafnet model | |
https://github.com/megvii-research/NAFNet/blob/main/options/test/SIDD/NAFNet-width32.yml | |
""" | |
net = NAFNet(img_channel=input_channels, width=width, middle_blk_num=middle_blk_num, | |
enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) | |
# inp_shape = (3, 256, 256) | |
# from ptflops import get_model_complexity_info | |
# macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) | |
# params = float(params[:-3]) | |
# macs = float(macs[:-4]) | |
# print(macs, params) | |
return net |