Upload pipeline_ddcm.py
Browse files- pipeline_ddcm.py +676 -0
pipeline_ddcm.py
ADDED
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL
|
6 |
+
import torch
|
7 |
+
from packaging import version
|
8 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import FrozenDict
|
11 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
12 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
13 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
14 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
15 |
+
from diffusers.schedulers import LCMScheduler
|
16 |
+
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging
|
17 |
+
from diffusers.utils.torch_utils import randn_tensor
|
18 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
19 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
20 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
24 |
+
|
25 |
+
|
26 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
|
27 |
+
def preprocess(image):
|
28 |
+
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead"
|
29 |
+
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False)
|
30 |
+
if isinstance(image, torch.Tensor):
|
31 |
+
return image
|
32 |
+
elif isinstance(image, PIL.Image.Image):
|
33 |
+
image = [image]
|
34 |
+
|
35 |
+
if isinstance(image[0], PIL.Image.Image):
|
36 |
+
w, h = image[0].size
|
37 |
+
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
|
38 |
+
|
39 |
+
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
|
40 |
+
image = np.concatenate(image, axis=0)
|
41 |
+
image = np.array(image).astype(np.float32) / 255.0
|
42 |
+
image = image.transpose(0, 3, 1, 2)
|
43 |
+
image = 2.0 * image - 1.0
|
44 |
+
image = torch.from_numpy(image)
|
45 |
+
elif isinstance(image[0], torch.Tensor):
|
46 |
+
image = torch.cat(image, dim=0)
|
47 |
+
return image
|
48 |
+
|
49 |
+
|
50 |
+
def ddcm_sampler(scheduler, x_s, x_t, timestep, e_s, e_t, x_0, noise, eta):
|
51 |
+
if scheduler.num_inference_steps is None:
|
52 |
+
raise ValueError(
|
53 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
54 |
+
)
|
55 |
+
|
56 |
+
if scheduler.step_index is None:
|
57 |
+
scheduler._init_step_index(timestep)
|
58 |
+
|
59 |
+
prev_step_index = scheduler.step_index + 1
|
60 |
+
if prev_step_index < len(scheduler.timesteps):
|
61 |
+
prev_timestep = scheduler.timesteps[prev_step_index]
|
62 |
+
else:
|
63 |
+
prev_timestep = timestep
|
64 |
+
|
65 |
+
alpha_prod_t = scheduler.alphas_cumprod[timestep]
|
66 |
+
alpha_prod_t_prev = (
|
67 |
+
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
|
68 |
+
)
|
69 |
+
beta_prod_t = 1 - alpha_prod_t
|
70 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
71 |
+
variance = beta_prod_t_prev
|
72 |
+
std_dev_t = eta * variance
|
73 |
+
noise = std_dev_t ** (0.5) * noise
|
74 |
+
|
75 |
+
e_c = (x_s - alpha_prod_t ** (0.5) * x_0) / (1 - alpha_prod_t) ** (0.5)
|
76 |
+
|
77 |
+
pred_x0 = x_0 + ((x_t - x_s) - beta_prod_t ** (0.5) * (e_t - e_s)) / alpha_prod_t ** (0.5)
|
78 |
+
eps = (e_t - e_s) + e_c
|
79 |
+
dir_xt = (beta_prod_t_prev - std_dev_t) ** (0.5) * eps
|
80 |
+
|
81 |
+
# Noise is not used for one-step sampling.
|
82 |
+
if len(scheduler.timesteps) > 1:
|
83 |
+
prev_xt = alpha_prod_t_prev ** (0.5) * pred_x0 + dir_xt + noise
|
84 |
+
prev_xs = alpha_prod_t_prev ** (0.5) * x_0 + dir_xt + noise
|
85 |
+
else:
|
86 |
+
prev_xt = pred_x0
|
87 |
+
prev_xs = x_0
|
88 |
+
|
89 |
+
scheduler._step_index += 1
|
90 |
+
return prev_xs, prev_xt, pred_x0
|
91 |
+
|
92 |
+
|
93 |
+
class DDCMPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
94 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
95 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vae: AutoencoderKL,
|
100 |
+
text_encoder: CLIPTextModel,
|
101 |
+
tokenizer: CLIPTokenizer,
|
102 |
+
unet: UNet2DConditionModel,
|
103 |
+
scheduler: LCMScheduler,
|
104 |
+
safety_checker: StableDiffusionSafetyChecker,
|
105 |
+
feature_extractor: CLIPImageProcessor,
|
106 |
+
requires_safety_checker: bool = True,
|
107 |
+
):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
111 |
+
deprecation_message = (
|
112 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
113 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
114 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
115 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
116 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
117 |
+
" file"
|
118 |
+
)
|
119 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
120 |
+
new_config = dict(scheduler.config)
|
121 |
+
new_config["steps_offset"] = 1
|
122 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
123 |
+
|
124 |
+
if safety_checker is None and requires_safety_checker:
|
125 |
+
logger.warning(
|
126 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
127 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
128 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
129 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
130 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
131 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
132 |
+
)
|
133 |
+
|
134 |
+
if safety_checker is not None and feature_extractor is None:
|
135 |
+
raise ValueError(
|
136 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
137 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
138 |
+
)
|
139 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
140 |
+
version.parse(unet.config._diffusers_version).base_version
|
141 |
+
) < version.parse("0.9.0.dev0")
|
142 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
143 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
144 |
+
deprecation_message = (
|
145 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
146 |
+
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
147 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
148 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
149 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
150 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
151 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
152 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
153 |
+
" the `unet/config.json` file"
|
154 |
+
)
|
155 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
156 |
+
new_config = dict(unet.config)
|
157 |
+
new_config["sample_size"] = 64
|
158 |
+
unet._internal_dict = FrozenDict(new_config)
|
159 |
+
|
160 |
+
self.register_modules(
|
161 |
+
vae=vae,
|
162 |
+
text_encoder=text_encoder,
|
163 |
+
tokenizer=tokenizer,
|
164 |
+
unet=unet,
|
165 |
+
scheduler=scheduler,
|
166 |
+
safety_checker=safety_checker,
|
167 |
+
feature_extractor=feature_extractor,
|
168 |
+
)
|
169 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
170 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
171 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
172 |
+
|
173 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
174 |
+
def _encode_prompt(
|
175 |
+
self,
|
176 |
+
prompt,
|
177 |
+
device,
|
178 |
+
num_images_per_prompt,
|
179 |
+
do_classifier_free_guidance,
|
180 |
+
negative_prompt=None,
|
181 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
182 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
183 |
+
lora_scale: Optional[float] = None,
|
184 |
+
):
|
185 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
186 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
187 |
+
|
188 |
+
prompt_embeds_tuple = self.encode_prompt(
|
189 |
+
prompt=prompt,
|
190 |
+
device=device,
|
191 |
+
num_images_per_prompt=num_images_per_prompt,
|
192 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
193 |
+
negative_prompt=negative_prompt,
|
194 |
+
prompt_embeds=prompt_embeds,
|
195 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
196 |
+
lora_scale=lora_scale,
|
197 |
+
)
|
198 |
+
|
199 |
+
# concatenate for backwards comp
|
200 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
201 |
+
|
202 |
+
return prompt_embeds
|
203 |
+
|
204 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
205 |
+
def encode_prompt(
|
206 |
+
self,
|
207 |
+
prompt,
|
208 |
+
device,
|
209 |
+
num_images_per_prompt,
|
210 |
+
do_classifier_free_guidance,
|
211 |
+
negative_prompt=None,
|
212 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
213 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
214 |
+
lora_scale: Optional[float] = None,
|
215 |
+
):
|
216 |
+
# set lora scale so that monkey patched LoRA
|
217 |
+
# function of text encoder can correctly access it
|
218 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
219 |
+
self._lora_scale = lora_scale
|
220 |
+
|
221 |
+
# dynamically adjust the LoRA scale
|
222 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
223 |
+
|
224 |
+
if prompt is not None and isinstance(prompt, str):
|
225 |
+
batch_size = 1
|
226 |
+
elif prompt is not None and isinstance(prompt, list):
|
227 |
+
batch_size = len(prompt)
|
228 |
+
else:
|
229 |
+
batch_size = prompt_embeds.shape[0]
|
230 |
+
|
231 |
+
if prompt_embeds is None:
|
232 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
233 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
234 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
235 |
+
|
236 |
+
text_inputs = self.tokenizer(
|
237 |
+
prompt,
|
238 |
+
padding="max_length",
|
239 |
+
max_length=self.tokenizer.model_max_length,
|
240 |
+
truncation=True,
|
241 |
+
return_tensors="pt",
|
242 |
+
)
|
243 |
+
text_input_ids = text_inputs.input_ids
|
244 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
245 |
+
|
246 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
247 |
+
text_input_ids, untruncated_ids
|
248 |
+
):
|
249 |
+
removed_text = self.tokenizer.batch_decode(
|
250 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
251 |
+
)
|
252 |
+
logger.warning(
|
253 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
254 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
255 |
+
)
|
256 |
+
|
257 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
258 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
259 |
+
else:
|
260 |
+
attention_mask = None
|
261 |
+
|
262 |
+
prompt_embeds = self.text_encoder(
|
263 |
+
text_input_ids.to(device),
|
264 |
+
attention_mask=attention_mask,
|
265 |
+
)
|
266 |
+
prompt_embeds = prompt_embeds[0]
|
267 |
+
|
268 |
+
if self.text_encoder is not None:
|
269 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
270 |
+
elif self.unet is not None:
|
271 |
+
prompt_embeds_dtype = self.unet.dtype
|
272 |
+
else:
|
273 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
274 |
+
|
275 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
276 |
+
|
277 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
278 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
279 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
280 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
281 |
+
|
282 |
+
# get unconditional embeddings for classifier free guidance
|
283 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
284 |
+
uncond_tokens: List[str]
|
285 |
+
if negative_prompt is None:
|
286 |
+
uncond_tokens = [""] * batch_size
|
287 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
288 |
+
raise TypeError(
|
289 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
290 |
+
f" {type(prompt)}."
|
291 |
+
)
|
292 |
+
elif isinstance(negative_prompt, str):
|
293 |
+
uncond_tokens = [negative_prompt]
|
294 |
+
elif batch_size != len(negative_prompt):
|
295 |
+
raise ValueError(
|
296 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
297 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
298 |
+
" the batch size of `prompt`."
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
uncond_tokens = negative_prompt
|
302 |
+
|
303 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
304 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
305 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
306 |
+
|
307 |
+
max_length = prompt_embeds.shape[1]
|
308 |
+
uncond_input = self.tokenizer(
|
309 |
+
uncond_tokens,
|
310 |
+
padding="max_length",
|
311 |
+
max_length=max_length,
|
312 |
+
truncation=True,
|
313 |
+
return_tensors="pt",
|
314 |
+
)
|
315 |
+
|
316 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
317 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
318 |
+
else:
|
319 |
+
attention_mask = None
|
320 |
+
|
321 |
+
negative_prompt_embeds = self.text_encoder(
|
322 |
+
uncond_input.input_ids.to(device),
|
323 |
+
attention_mask=attention_mask,
|
324 |
+
)
|
325 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
326 |
+
|
327 |
+
if do_classifier_free_guidance:
|
328 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
329 |
+
seq_len = negative_prompt_embeds.shape[1]
|
330 |
+
|
331 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
332 |
+
|
333 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
334 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
335 |
+
|
336 |
+
return prompt_embeds, negative_prompt_embeds
|
337 |
+
|
338 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs
|
339 |
+
def check_inputs(
|
340 |
+
self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None
|
341 |
+
):
|
342 |
+
if strength < 0 or strength > 1:
|
343 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
344 |
+
|
345 |
+
if (callback_steps is None) or (
|
346 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
347 |
+
):
|
348 |
+
raise ValueError(
|
349 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
350 |
+
f" {type(callback_steps)}."
|
351 |
+
)
|
352 |
+
|
353 |
+
if prompt is not None and prompt_embeds is not None:
|
354 |
+
raise ValueError(
|
355 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
356 |
+
" only forward one of the two."
|
357 |
+
)
|
358 |
+
elif prompt is None and prompt_embeds is None:
|
359 |
+
raise ValueError(
|
360 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
361 |
+
)
|
362 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
363 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
364 |
+
|
365 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
366 |
+
raise ValueError(
|
367 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
368 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
369 |
+
)
|
370 |
+
|
371 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
372 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
373 |
+
raise ValueError(
|
374 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
375 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
376 |
+
f" {negative_prompt_embeds.shape}."
|
377 |
+
)
|
378 |
+
|
379 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
380 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
381 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
382 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
383 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
384 |
+
# and should be between [0, 1]
|
385 |
+
|
386 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
387 |
+
extra_step_kwargs = {}
|
388 |
+
if accepts_eta:
|
389 |
+
extra_step_kwargs["eta"] = eta
|
390 |
+
|
391 |
+
# check if the scheduler accepts generator
|
392 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
393 |
+
if accepts_generator:
|
394 |
+
extra_step_kwargs["generator"] = generator
|
395 |
+
return extra_step_kwargs
|
396 |
+
|
397 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
398 |
+
def run_safety_checker(self, image, device, dtype):
|
399 |
+
if self.safety_checker is None:
|
400 |
+
has_nsfw_concept = None
|
401 |
+
else:
|
402 |
+
if torch.is_tensor(image):
|
403 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
404 |
+
else:
|
405 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
406 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
407 |
+
image, has_nsfw_concept = self.safety_checker(
|
408 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
409 |
+
)
|
410 |
+
return image, has_nsfw_concept
|
411 |
+
|
412 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
413 |
+
def decode_latents(self, latents):
|
414 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
415 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
416 |
+
|
417 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
418 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
419 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
420 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
421 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
422 |
+
return image
|
423 |
+
|
424 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
425 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
426 |
+
# get the original timestep using init_timestep
|
427 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
428 |
+
|
429 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
430 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
431 |
+
|
432 |
+
return timesteps, num_inference_steps - t_start
|
433 |
+
|
434 |
+
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, denoise_model, generator=None):
|
435 |
+
image = image.to(device=device, dtype=dtype)
|
436 |
+
|
437 |
+
batch_size = image.shape[0]
|
438 |
+
|
439 |
+
if image.shape[1] == 4:
|
440 |
+
init_latents = image
|
441 |
+
|
442 |
+
else:
|
443 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
444 |
+
raise ValueError(
|
445 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
446 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
447 |
+
)
|
448 |
+
|
449 |
+
if isinstance(generator, list):
|
450 |
+
init_latents = [
|
451 |
+
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
452 |
+
]
|
453 |
+
init_latents = torch.cat(init_latents, dim=0)
|
454 |
+
else:
|
455 |
+
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
456 |
+
|
457 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
458 |
+
|
459 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
460 |
+
# expand init_latents for batch_size
|
461 |
+
deprecation_message = (
|
462 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
463 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
464 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
465 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
466 |
+
)
|
467 |
+
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
468 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
469 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt * num_images_per_prompt, dim=0)
|
470 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
471 |
+
raise ValueError(
|
472 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
473 |
+
)
|
474 |
+
else:
|
475 |
+
init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
|
476 |
+
|
477 |
+
# add noise to latents using the timestep
|
478 |
+
shape = init_latents.shape
|
479 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
480 |
+
|
481 |
+
# get latents
|
482 |
+
clean_latents = init_latents
|
483 |
+
if denoise_model:
|
484 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
485 |
+
latents = init_latents
|
486 |
+
else:
|
487 |
+
latents = noise
|
488 |
+
|
489 |
+
return latents, clean_latents
|
490 |
+
|
491 |
+
@torch.no_grad()
|
492 |
+
def __call__(
|
493 |
+
self,
|
494 |
+
prompt: Union[str, List[str]],
|
495 |
+
source_prompt: Union[str, List[str]],
|
496 |
+
negative_prompt: Union[str, List[str]]=None,
|
497 |
+
positive_prompt: Union[str, List[str]]=None,
|
498 |
+
image: PipelineImageInput = None,
|
499 |
+
strength: float = 0.8,
|
500 |
+
num_inference_steps: Optional[int] = 50,
|
501 |
+
original_inference_steps: Optional[int] = 50,
|
502 |
+
guidance_scale: Optional[float] = 7.5,
|
503 |
+
source_guidance_scale: Optional[float] = 1,
|
504 |
+
num_images_per_prompt: Optional[int] = 1,
|
505 |
+
eta: Optional[float] = 1.0,
|
506 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
507 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
508 |
+
output_type: Optional[str] = "pil",
|
509 |
+
return_dict: bool = True,
|
510 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
511 |
+
callback_steps: int = 1,
|
512 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
513 |
+
denoise_model: Optional[bool] = True,
|
514 |
+
):
|
515 |
+
# 1. Check inputs
|
516 |
+
self.check_inputs(prompt, strength, callback_steps)
|
517 |
+
|
518 |
+
# 2. Define call parameters
|
519 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
520 |
+
device = self._execution_device
|
521 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
522 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
523 |
+
# corresponds to doing no classifier free guidance.
|
524 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
525 |
+
|
526 |
+
# 3. Encode input prompt
|
527 |
+
text_encoder_lora_scale = (
|
528 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
529 |
+
)
|
530 |
+
prompt_embeds_tuple = self.encode_prompt(
|
531 |
+
prompt,
|
532 |
+
device,
|
533 |
+
num_images_per_prompt,
|
534 |
+
do_classifier_free_guidance,
|
535 |
+
negative_prompt=negative_prompt,
|
536 |
+
prompt_embeds=prompt_embeds,
|
537 |
+
lora_scale=text_encoder_lora_scale,
|
538 |
+
)
|
539 |
+
source_prompt_embeds_tuple = self.encode_prompt(
|
540 |
+
source_prompt, device, num_images_per_prompt, do_classifier_free_guidance, positive_prompt, None
|
541 |
+
)
|
542 |
+
if prompt_embeds_tuple[1] is not None:
|
543 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
544 |
+
else:
|
545 |
+
prompt_embeds = prompt_embeds_tuple[0]
|
546 |
+
if source_prompt_embeds_tuple[1] is not None:
|
547 |
+
source_prompt_embeds = torch.cat([source_prompt_embeds_tuple[1], source_prompt_embeds_tuple[0]])
|
548 |
+
else:
|
549 |
+
source_prompt_embeds = source_prompt_embeds_tuple[0]
|
550 |
+
|
551 |
+
# 4. Preprocess image
|
552 |
+
image = self.image_processor.preprocess(image)
|
553 |
+
|
554 |
+
# 5. Prepare timesteps
|
555 |
+
self.scheduler.set_timesteps(
|
556 |
+
num_inference_steps=num_inference_steps,
|
557 |
+
device=device,
|
558 |
+
original_inference_steps=original_inference_steps)
|
559 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
560 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
561 |
+
|
562 |
+
# 6. Prepare latent variables
|
563 |
+
latents, clean_latents = self.prepare_latents(
|
564 |
+
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, denoise_model, generator
|
565 |
+
)
|
566 |
+
source_latents = latents
|
567 |
+
|
568 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
569 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
570 |
+
generator = extra_step_kwargs.pop("generator", None)
|
571 |
+
|
572 |
+
# 8. Denoising loop
|
573 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
574 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
575 |
+
for i, t in enumerate(timesteps):
|
576 |
+
# expand the latents if we are doing classifier free guidance
|
577 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
578 |
+
source_latent_model_input = (
|
579 |
+
torch.cat([source_latents] * 2) if do_classifier_free_guidance else source_latents
|
580 |
+
)
|
581 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
582 |
+
source_latent_model_input = self.scheduler.scale_model_input(source_latent_model_input, t)
|
583 |
+
|
584 |
+
# predict the noise residual
|
585 |
+
if do_classifier_free_guidance:
|
586 |
+
concat_latent_model_input = torch.stack(
|
587 |
+
[
|
588 |
+
source_latent_model_input[0],
|
589 |
+
latent_model_input[0],
|
590 |
+
source_latent_model_input[1],
|
591 |
+
latent_model_input[1],
|
592 |
+
],
|
593 |
+
dim=0,
|
594 |
+
)
|
595 |
+
concat_prompt_embeds = torch.stack(
|
596 |
+
[
|
597 |
+
source_prompt_embeds[0],
|
598 |
+
prompt_embeds[0],
|
599 |
+
source_prompt_embeds[1],
|
600 |
+
prompt_embeds[1],
|
601 |
+
],
|
602 |
+
dim=0,
|
603 |
+
)
|
604 |
+
else:
|
605 |
+
concat_latent_model_input = torch.cat(
|
606 |
+
[
|
607 |
+
source_latent_model_input,
|
608 |
+
latent_model_input,
|
609 |
+
],
|
610 |
+
dim=0,
|
611 |
+
)
|
612 |
+
concat_prompt_embeds = torch.cat(
|
613 |
+
[
|
614 |
+
source_prompt_embeds,
|
615 |
+
prompt_embeds,
|
616 |
+
],
|
617 |
+
dim=0,
|
618 |
+
)
|
619 |
+
|
620 |
+
concat_noise_pred = self.unet(
|
621 |
+
concat_latent_model_input,
|
622 |
+
t,
|
623 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
624 |
+
encoder_hidden_states=concat_prompt_embeds,
|
625 |
+
).sample
|
626 |
+
|
627 |
+
# perform guidance
|
628 |
+
if do_classifier_free_guidance:
|
629 |
+
(
|
630 |
+
source_noise_pred_uncond,
|
631 |
+
noise_pred_uncond,
|
632 |
+
source_noise_pred_text,
|
633 |
+
noise_pred_text,
|
634 |
+
) = concat_noise_pred.chunk(4, dim=0)
|
635 |
+
|
636 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
637 |
+
source_noise_pred = source_noise_pred_uncond + source_guidance_scale * (
|
638 |
+
source_noise_pred_text - source_noise_pred_uncond
|
639 |
+
)
|
640 |
+
|
641 |
+
else:
|
642 |
+
(source_noise_pred, noise_pred) = concat_noise_pred.chunk(2, dim=0)
|
643 |
+
|
644 |
+
noise = torch.randn(
|
645 |
+
latents.shape, dtype=latents.dtype, device=latents.device, generator=generator
|
646 |
+
)
|
647 |
+
|
648 |
+
source_latents, latents, pred_x0 = ddcm_sampler(
|
649 |
+
self.scheduler, source_latents, latents, t, source_noise_pred, noise_pred, clean_latents, noise=noise, eta=eta, **extra_step_kwargs
|
650 |
+
)
|
651 |
+
|
652 |
+
# call the callback, if provided
|
653 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
654 |
+
progress_bar.update()
|
655 |
+
if callback is not None and i % callback_steps == 0:
|
656 |
+
callback(i, t, latents)
|
657 |
+
|
658 |
+
# 9. Post-processing
|
659 |
+
if not output_type == "latent":
|
660 |
+
image = self.vae.decode(pred_x0 / self.vae.config.scaling_factor, return_dict=False)[0]
|
661 |
+
has_nsfw_concept = [False] * len(image)
|
662 |
+
else:
|
663 |
+
image = pred_x0
|
664 |
+
has_nsfw_concept = None
|
665 |
+
|
666 |
+
if has_nsfw_concept is None:
|
667 |
+
do_denormalize = [True] * image.shape[0]
|
668 |
+
else:
|
669 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
670 |
+
|
671 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
672 |
+
|
673 |
+
if not return_dict:
|
674 |
+
return (image, has_nsfw_concept)
|
675 |
+
|
676 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|