ImgCleaner / app.py
yizhangliu's picture
Update app.py
7ca8913
import os, sys, json, time
os.system("pip list")
import gradio as gr
from PIL import Image
import numpy as np
import torch
import cv2
import io
import multiprocessing
import random
from loguru import logger
from utils import *
from share_btn import *
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config
try:
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(False)
except:
pass
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
NUM_THREADS = str(multiprocessing.cpu_count())
# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def get_image_enhancer(scale = 2, device='cuda:0'):
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from gfpgan import GFPGANer
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
num_block=23, num_grow_ch=32, scale=4
)
netscale = scale
model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
upsampler = RealESRGANer(
scale=netscale,
model_path=model_realesrgan,
model=realesrgan_model,
tile=0,
tile_pad=10,
pre_pad=0,
half=False if device=='cpu' else True,
device=device
)
model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
img_enhancer = GFPGANer(
model_path=model_GFPGAN,
upscale=scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler,
device=device
)
return img_enhancer
image_enhancer = None
if sys.platform == 'linux' and 0==1:
image_enhancer = get_image_enhancer(scale = 1, device=device)
model = None
def model_process(image, mask, img_enhancer):
global model,image_enhancer
ori_image = image
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
# rotate image
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
image = ori_image
original_shape = ori_image.shape
interpolation = cv2.INTER_CUBIC
size_limit = 1080
if size_limit == "Original":
size_limit = max(image.shape)
else:
size_limit = int(size_limit)
config = Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
logger.info(f"Resized image shape_1_: {image.shape}")
logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
if model is None:
return None
res_np_img = model(image, mask, config)
torch.cuda.empty_cache()
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
if image_enhancer is not None and img_enhancer:
start = time.time()
input_img_rgb = np.array(image)
input_img_bgr = input_img_rgb[...,[2,1,0]]
_, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False,
only_center_face=False, paste_back=True)
input_img_rgb = enhance_img[...,[2,1,0]]
img_enhance = Image.fromarray(np.uint8(input_img_rgb))
image = img_enhance
log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} "
logger.info(log_info)
return image, Image.fromarray(ori_image)
def resize_image(pil_image, new_width=400):
width, height = pil_image.size
new_height = int(height*(new_width/width))
pil_image = pil_image.resize((new_width, new_height))
return pil_image
model = ModelManager(
name='lama',
device=device,
)
image_type = 'pil' # filepath'
def predict(input, platform_radio, img_enhancer):
if input is None:
return None, [], gr.update(visible=False)
if image_type == 'filepath':
# input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
origin_image_bytes = open(input["image"], 'rb').read()
print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))
image, _ = load_img(origin_image_bytes)
mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)
elif image_type == 'pil':
# input: {'image': pil, 'mask': pil}
image_pil = input['image']
mask_pil = input['mask']
image = np.array(image_pil)
mask = np.array(mask_pil.convert("L"))
output, ori_image = model_process(image, mask, img_enhancer)
if platform_radio == 'pc':
return output, [ori_image, output], gr.update(visible=True)
else:
return output, [resize_image(ori_image, new_width=400), resize_image(output, new_width=400)], gr.update(visible=True)
image_blocks = gr.Blocks(css=css, title='Image Cleaner')
with image_blocks as demo:
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row(elem_id="gallery_row"):
with gr.Column(elem_id="gallery_col"):
gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
gallery.style(grid=[2], height='500px')
with gr.Row():
with gr.Column():
begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True)
with gr.Row():
with gr.Column():
gr.HTML("""
<div style='margin: 0 auto; text-align: center;color:red;'>
<p>
Solemnly promise: this application will not collect any user information and image resources.
</p>
</div>
<div style='margin: 0 auto; text-align: center'>
The model comes from <a href='https://github.com/Sanster/lama-cleaner' target=_blank>[<font style='color:blue;'>Lama</font>]</a>. Thanks! ❤️<br>
<a href='https://huggingface.co' target=_blank>[<font style='color:blue;'>huggingface.co</font>]</a> provides code hosting. Thanks! ❤️
</div>
"""
)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Box(elem_id="work-container"):
with gr.Row(elem_id="input-container"):
with gr.Column():
image_input = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}',
label="Upload", show_label=False).style(mobile_collapse=False)
with gr.Row(elem_id="scroll_x_row"):
with gr.Column(id="scroll_x_col"):
gr.HTML("""
<div id="scroll_x_container" style="width:100%;height:25px;"></div>
"""
)
with gr.Row(elem_id="op-container").style(mobile_collapse=False, equal_height=True):
with gr.Column(elem_id="erase-btn-container"):
erase_btn = gr.Button(value = "Erase(⏬)",elem_id="erase-btn").style(
margin=True,
rounded=(True, True, True, True),
full_width=True,
).style(width=100)
with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)'
img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150)
with gr.Row(elem_id="output-container"):
with gr.Column(elem_id="image-output-container"):
image_out = gr.Image(elem_id="image_output",label="Result", show_label=False, visible=False)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="600px")
platform_radio = gr.Radio(["pc", "mobile"], elem_id="platform_radio",value="pc",
label="platform:", show_label=True, visible=False)
with gr.Row(elem_id="download-container", visible=False) as download_container:
with gr.Column(elem_id="download-btn-container") as download_btn_container:
download_button = gr.Button(elem_id="download-btn", value="Save(⏩)")
with gr.Column(elem_id="share-container") as share_container:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, elem_id="community-icon", visible=True)
loading_icon = gr.HTML(loading_icon_html, elem_id="loading-icon", visible=True)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row(elem_id="log_row"):
with gr.Column(id="log_col"):
gr.HTML("""
<div id="log_container" style="width:100%;height:auto;">
</div>
"""
)
erase_btn.click(fn=predict, inputs=[image_input, platform_radio, img_enhancer], outputs=[image_out, gallery, download_container])
download_button.click(None, [], [], _js=download_img)
share_button.click(None, [], [], _js=share_js)
begin_button.click(fn=None, inputs=[], outputs=[page_1, page_2], _js=start_cleaner)
os.system("pip list")
image_blocks.launch(server_name='0.0.0.0')