Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import argparse | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import sys | |
from typing import Callable | |
import dlib | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as T | |
if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available(): | |
with open("patch") as f: | |
subprocess.run(shlex.split("patch -p1"), cwd="DualStyleGAN", stdin=f) | |
app_dir = pathlib.Path(__file__).parent | |
submodule_dir = app_dir / "DualStyleGAN" | |
sys.path.insert(0, submodule_dir.as_posix()) | |
from model.dualstylegan import DualStyleGAN | |
from model.encoder.align_all_parallel import align_face | |
from model.encoder.psp import pSp | |
class Model: | |
def __init__(self): | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
self.landmark_model = self._create_dlib_landmark_model() | |
self.encoder = self._load_encoder() | |
self.transform = self._create_transform() | |
self.style_types = [ | |
"cartoon", | |
"caricature", | |
"anime", | |
"arcane", | |
"comic", | |
"pixar", | |
"slamdunk", | |
] | |
self.generator_dict = {style_type: self._load_generator(style_type) for style_type in self.style_types} | |
self.exstyle_dict = {style_type: self._load_exstylecode(style_type) for style_type in self.style_types} | |
def _create_dlib_landmark_model(): | |
path = huggingface_hub.hf_hub_download( | |
"public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat" | |
) | |
return dlib.shape_predictor(path) | |
def _load_encoder(self) -> nn.Module: | |
ckpt_path = huggingface_hub.hf_hub_download("public-data/DualStyleGAN", "models/encoder.pt") | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
opts = ckpt["opts"] | |
opts["device"] = self.device.type | |
opts["checkpoint_path"] = ckpt_path | |
opts = argparse.Namespace(**opts) | |
model = pSp(opts) | |
model.to(self.device) | |
model.eval() | |
return model | |
def _create_transform() -> Callable: | |
transform = T.Compose( | |
[ | |
T.Resize(256), | |
T.CenterCrop(256), | |
T.ToTensor(), | |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
] | |
) | |
return transform | |
def _load_generator(self, style_type: str) -> nn.Module: | |
model = DualStyleGAN(1024, 512, 8, 2, res_index=6) | |
ckpt_path = huggingface_hub.hf_hub_download("public-data/DualStyleGAN", f"models/{style_type}/generator.pt") | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
model.load_state_dict(ckpt["g_ema"]) | |
model.to(self.device) | |
model.eval() | |
return model | |
def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]: | |
if style_type in ["cartoon", "caricature", "anime"]: | |
filename = "refined_exstyle_code.npy" | |
else: | |
filename = "exstyle_code.npy" | |
path = huggingface_hub.hf_hub_download("public-data/DualStyleGAN", f"models/{style_type}/{filename}") | |
exstyles = np.load(path, allow_pickle=True).item() | |
return exstyles | |
def detect_and_align_face(self, image: str) -> np.ndarray: | |
image = align_face(filepath=image, predictor=self.landmark_model) | |
return image | |
def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
tensor = self.denormalize(tensor) | |
return tensor.cpu().numpy().transpose(1, 2, 0) | |
def reconstruct_face(self, image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]: | |
image = PIL.Image.fromarray(image) | |
input_data = self.transform(image).unsqueeze(0).to(self.device) | |
img_rec, instyle = self.encoder( | |
input_data, | |
randomize_noise=False, | |
return_latents=True, | |
z_plus_latent=True, | |
return_z_plus_latent=True, | |
resize=False, | |
) | |
img_rec = torch.clamp(img_rec.detach(), -1, 1) | |
img_rec = self.postprocess(img_rec[0]) | |
return img_rec, instyle | |
def generate( | |
self, | |
style_type: str, | |
style_id: int, | |
structure_weight: float, | |
color_weight: float, | |
structure_only: bool, | |
instyle: torch.Tensor, | |
) -> np.ndarray: | |
generator = self.generator_dict[style_type] | |
exstyles = self.exstyle_dict[style_type] | |
style_id = int(style_id) | |
stylename = list(exstyles.keys())[style_id] | |
latent = torch.tensor(exstyles[stylename]).to(self.device) | |
if structure_only: | |
latent[0, 7:18] = instyle[0, 7:18] | |
exstyle = generator.generator.style( | |
latent.reshape(latent.shape[0] * latent.shape[1], latent.shape[2]) | |
).reshape(latent.shape) | |
img_gen, _ = generator( | |
[instyle], | |
exstyle, | |
z_plus_latent=True, | |
truncation=0.7, | |
truncation_latent=0, | |
use_res=True, | |
interp_weights=[structure_weight] * 7 + [color_weight] * 11, | |
) | |
img_gen = torch.clamp(img_gen.detach(), -1, 1) | |
img_gen = self.postprocess(img_gen[0]) | |
return img_gen | |