Spaces:
Paused
Paused
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import UniPCMultistepScheduler | |
from PIL import Image | |
from diffusion_webui.controlnet_inpaint.canny_inpaint import controlnet_canny | |
from diffusion_webui.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import ( | |
StableDiffusionControlNetInpaintPipeline, | |
) | |
stable_inpaint_model_list = [ | |
"runwayml/stable-diffusion-inpainting", | |
"stabilityai/stable-diffusion-2-inpainting", | |
] | |
controlnet_model_list = [ | |
"lllyasviel/sd-controlnet-canny", | |
] | |
prompt_list = [ | |
"a red panda sitting on a bench", | |
] | |
negative_prompt_list = [ | |
"bad, ugly", | |
] | |
def load_img(image_path: str): | |
image = Image.open(image_path) | |
image = np.array(image) | |
image = Image.fromarray(image) | |
return image | |
def stable_diffusion_inpiant_controlnet_canny( | |
dict_image: str, | |
stable_model_path: str, | |
controlnet_model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
controlnet_conditioning_scale: str, | |
guidance_scale: int, | |
num_inference_steps: int, | |
): | |
normal_image = dict_image["image"].convert("RGB").resize((512, 512)) | |
mask_image = dict_image["mask"].convert("RGB").resize((512, 512)) | |
controlnet, control_image = controlnet_canny( | |
dict_image=dict_image, | |
controlnet_model_path=controlnet_model_path, | |
) | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
pretrained_model_name_or_path=stable_model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
) | |
pipe.to("cuda") | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
generator = torch.manual_seed(0) | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
image=normal_image, | |
control_image=control_image, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=guidance_scale, | |
mask_image=mask_image, | |
).images | |
return output[0] | |
def stable_diffusion_inpiant_controlnet_canny_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
inpaint_image_file = gr.Image( | |
source="upload", | |
tool="sketch", | |
elem_id="image_upload", | |
type="pil", | |
label="Upload", | |
) | |
inpaint_model_id = gr.Dropdown( | |
choices=stable_inpaint_model_list, | |
value=stable_inpaint_model_list[0], | |
label="Inpaint Model Id", | |
) | |
inpaint_controlnet_model_id = gr.Dropdown( | |
choices=controlnet_model_list, | |
value=controlnet_model_list[0], | |
label="ControlNet Model Id", | |
) | |
inpaint_prompt = gr.Textbox( | |
lines=1, value=prompt_list[0], label="Prompt" | |
) | |
inpaint_negative_prompt = gr.Textbox( | |
lines=1, | |
value=negative_prompt_list[0], | |
label="Negative Prompt", | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
controlnet_conditioning_scale = gr.Slider( | |
minimum=0.1, | |
maximum=1, | |
step=0.1, | |
value=0.5, | |
label="ControlNet Conditioning Scale", | |
) | |
inpaint_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
inpaint_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
inpaint_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Image(label="Outputs") | |
inpaint_predict.click( | |
fn=stable_diffusion_inpiant_controlnet_canny, | |
inputs=[ | |
inpaint_image_file, | |
inpaint_model_id, | |
inpaint_controlnet_model_id, | |
inpaint_prompt, | |
inpaint_negative_prompt, | |
controlnet_conditioning_scale, | |
inpaint_guidance_scale, | |
inpaint_num_inference_step, | |
], | |
outputs=output_image, | |
) | |