Spaces:
Runtime error
Runtime error
Update synthesizer/inference.py
Browse files- synthesizer/inference.py +166 -165
synthesizer/inference.py
CHANGED
@@ -1,165 +1,166 @@
|
|
1 |
-
import torch
|
2 |
-
from synthesizer import audio
|
3 |
-
from synthesizer.hparams import hparams
|
4 |
-
from synthesizer.models.tacotron import Tacotron
|
5 |
-
from synthesizer.utils.symbols import symbols
|
6 |
-
from synthesizer.utils.text import text_to_sequence
|
7 |
-
from vocoder.display import simple_table
|
8 |
-
from pathlib import Path
|
9 |
-
from typing import Union, List
|
10 |
-
import numpy as np
|
11 |
-
import librosa
|
12 |
-
|
13 |
-
|
14 |
-
class Synthesizer:
|
15 |
-
sample_rate = hparams.sample_rate
|
16 |
-
hparams = hparams
|
17 |
-
|
18 |
-
def __init__(self, model_fpath: Path, verbose=True):
|
19 |
-
"""
|
20 |
-
The model isn't instantiated and loaded in memory until needed or until load() is called.
|
21 |
-
|
22 |
-
:param model_fpath: path to the trained model file
|
23 |
-
:param verbose: if False, prints less information when using the model
|
24 |
-
"""
|
25 |
-
self.model_fpath = model_fpath
|
26 |
-
self.verbose = verbose
|
27 |
-
|
28 |
-
# Check for GPU
|
29 |
-
if torch.cuda.is_available():
|
30 |
-
self.device = torch.device("cuda")
|
31 |
-
else:
|
32 |
-
self.device = torch.device("cpu")
|
33 |
-
if self.verbose:
|
34 |
-
print("Synthesizer using device:", self.device)
|
35 |
-
|
36 |
-
# Tacotron model will be instantiated later on first use.
|
37 |
-
self._model = None
|
38 |
-
|
39 |
-
def is_loaded(self):
|
40 |
-
"""
|
41 |
-
Whether the model is loaded in memory.
|
42 |
-
"""
|
43 |
-
return self._model is not None
|
44 |
-
|
45 |
-
def load(self):
|
46 |
-
"""
|
47 |
-
Instantiates and loads the model given the weights file that was passed in the constructor.
|
48 |
-
"""
|
49 |
-
self._model = Tacotron(embed_dims=hparams.tts_embed_dims,
|
50 |
-
num_chars=len(symbols),
|
51 |
-
encoder_dims=hparams.tts_encoder_dims,
|
52 |
-
decoder_dims=hparams.tts_decoder_dims,
|
53 |
-
n_mels=hparams.num_mels,
|
54 |
-
fft_bins=hparams.num_mels,
|
55 |
-
postnet_dims=hparams.tts_postnet_dims,
|
56 |
-
encoder_K=hparams.tts_encoder_K,
|
57 |
-
lstm_dims=hparams.tts_lstm_dims,
|
58 |
-
postnet_K=hparams.tts_postnet_K,
|
59 |
-
num_highways=hparams.tts_num_highways,
|
60 |
-
dropout=hparams.tts_dropout,
|
61 |
-
stop_threshold=hparams.tts_stop_threshold,
|
62 |
-
speaker_embedding_size=hparams.speaker_embedding_size).to(self.device)
|
63 |
-
|
64 |
-
self._model.load(self.model_fpath)
|
65 |
-
self._model.eval()
|
66 |
-
|
67 |
-
if self.verbose:
|
68 |
-
print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"]))
|
69 |
-
|
70 |
-
def synthesize_spectrograms(self, texts: List[str],
|
71 |
-
embeddings: Union[np.ndarray, List[np.ndarray]],
|
72 |
-
return_alignments=False):
|
73 |
-
"""
|
74 |
-
Synthesizes mel spectrograms from texts and speaker embeddings.
|
75 |
-
|
76 |
-
:param texts: a list of N text prompts to be synthesized
|
77 |
-
:param embeddings: a numpy array or list of speaker embeddings of shape (N, 256)
|
78 |
-
:param return_alignments: if True, a matrix representing the alignments between the
|
79 |
-
characters
|
80 |
-
and each decoder output step will be returned for each spectrogram
|
81 |
-
:return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the
|
82 |
-
sequence length of spectrogram i, and possibly the alignments.
|
83 |
-
"""
|
84 |
-
# Load the model on the first request.
|
85 |
-
if not self.is_loaded():
|
86 |
-
self.load()
|
87 |
-
|
88 |
-
# Preprocess text inputs
|
89 |
-
inputs = [text_to_sequence(text.strip(), hparams.tts_cleaner_names) for text in texts]
|
90 |
-
if not isinstance(embeddings, list):
|
91 |
-
embeddings = [embeddings]
|
92 |
-
|
93 |
-
# Batch inputs
|
94 |
-
batched_inputs = [inputs[i:i+hparams.synthesis_batch_size]
|
95 |
-
for i in range(0, len(inputs), hparams.synthesis_batch_size)]
|
96 |
-
batched_embeds = [embeddings[i:i+hparams.synthesis_batch_size]
|
97 |
-
for i in range(0, len(embeddings), hparams.synthesis_batch_size)]
|
98 |
-
|
99 |
-
specs = []
|
100 |
-
for i, batch in enumerate(batched_inputs, 1):
|
101 |
-
if self.verbose:
|
102 |
-
print(f"\n| Generating {i}/{len(batched_inputs)}")
|
103 |
-
|
104 |
-
# Pad texts so they are all the same length
|
105 |
-
text_lens = [len(text) for text in batch]
|
106 |
-
max_text_len = max(text_lens)
|
107 |
-
chars = [pad1d(text, max_text_len) for text in batch]
|
108 |
-
chars = np.stack(chars)
|
109 |
-
|
110 |
-
# Stack speaker embeddings into 2D array for batch processing
|
111 |
-
speaker_embeds = np.stack(batched_embeds[i-1])
|
112 |
-
|
113 |
-
# Convert to tensor
|
114 |
-
chars = torch.tensor(chars).long().to(self.device)
|
115 |
-
speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device)
|
116 |
-
|
117 |
-
# Inference
|
118 |
-
_, mels, alignments = self._model.generate(chars, speaker_embeddings)
|
119 |
-
mels = mels.detach().cpu().numpy()
|
120 |
-
for m in mels:
|
121 |
-
# Trim silence from end of each spectrogram
|
122 |
-
while np.max(m[:, -1]) < hparams.tts_stop_threshold:
|
123 |
-
m = m[:, :-1]
|
124 |
-
specs.append(m)
|
125 |
-
|
126 |
-
if self.verbose:
|
127 |
-
print("\n\nDone.\n")
|
128 |
-
return (specs, alignments) if return_alignments else specs
|
129 |
-
|
130 |
-
@staticmethod
|
131 |
-
def load_preprocess_wav(fpath):
|
132 |
-
"""
|
133 |
-
Loads and preprocesses an audio file under the same conditions the audio files were used to
|
134 |
-
train the synthesizer.
|
135 |
-
"""
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
1 |
+
import torch
|
2 |
+
from synthesizer import audio
|
3 |
+
from synthesizer.hparams import hparams
|
4 |
+
from synthesizer.models.tacotron import Tacotron
|
5 |
+
from synthesizer.utils.symbols import symbols
|
6 |
+
from synthesizer.utils.text import text_to_sequence
|
7 |
+
from vocoder.display import simple_table
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Union, List
|
10 |
+
import numpy as np
|
11 |
+
import librosa
|
12 |
+
|
13 |
+
|
14 |
+
class Synthesizer:
|
15 |
+
sample_rate = hparams.sample_rate
|
16 |
+
hparams = hparams
|
17 |
+
|
18 |
+
def __init__(self, model_fpath: Path, verbose=True):
|
19 |
+
"""
|
20 |
+
The model isn't instantiated and loaded in memory until needed or until load() is called.
|
21 |
+
|
22 |
+
:param model_fpath: path to the trained model file
|
23 |
+
:param verbose: if False, prints less information when using the model
|
24 |
+
"""
|
25 |
+
self.model_fpath = model_fpath
|
26 |
+
self.verbose = verbose
|
27 |
+
|
28 |
+
# Check for GPU
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
self.device = torch.device("cuda")
|
31 |
+
else:
|
32 |
+
self.device = torch.device("cpu")
|
33 |
+
if self.verbose:
|
34 |
+
print("Synthesizer using device:", self.device)
|
35 |
+
|
36 |
+
# Tacotron model will be instantiated later on first use.
|
37 |
+
self._model = None
|
38 |
+
|
39 |
+
def is_loaded(self):
|
40 |
+
"""
|
41 |
+
Whether the model is loaded in memory.
|
42 |
+
"""
|
43 |
+
return self._model is not None
|
44 |
+
|
45 |
+
def load(self):
|
46 |
+
"""
|
47 |
+
Instantiates and loads the model given the weights file that was passed in the constructor.
|
48 |
+
"""
|
49 |
+
self._model = Tacotron(embed_dims=hparams.tts_embed_dims,
|
50 |
+
num_chars=len(symbols),
|
51 |
+
encoder_dims=hparams.tts_encoder_dims,
|
52 |
+
decoder_dims=hparams.tts_decoder_dims,
|
53 |
+
n_mels=hparams.num_mels,
|
54 |
+
fft_bins=hparams.num_mels,
|
55 |
+
postnet_dims=hparams.tts_postnet_dims,
|
56 |
+
encoder_K=hparams.tts_encoder_K,
|
57 |
+
lstm_dims=hparams.tts_lstm_dims,
|
58 |
+
postnet_K=hparams.tts_postnet_K,
|
59 |
+
num_highways=hparams.tts_num_highways,
|
60 |
+
dropout=hparams.tts_dropout,
|
61 |
+
stop_threshold=hparams.tts_stop_threshold,
|
62 |
+
speaker_embedding_size=hparams.speaker_embedding_size).to(self.device)
|
63 |
+
|
64 |
+
self._model.load(self.model_fpath)
|
65 |
+
self._model.eval()
|
66 |
+
|
67 |
+
if self.verbose:
|
68 |
+
print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"]))
|
69 |
+
|
70 |
+
def synthesize_spectrograms(self, texts: List[str],
|
71 |
+
embeddings: Union[np.ndarray, List[np.ndarray]],
|
72 |
+
return_alignments=False):
|
73 |
+
"""
|
74 |
+
Synthesizes mel spectrograms from texts and speaker embeddings.
|
75 |
+
|
76 |
+
:param texts: a list of N text prompts to be synthesized
|
77 |
+
:param embeddings: a numpy array or list of speaker embeddings of shape (N, 256)
|
78 |
+
:param return_alignments: if True, a matrix representing the alignments between the
|
79 |
+
characters
|
80 |
+
and each decoder output step will be returned for each spectrogram
|
81 |
+
:return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the
|
82 |
+
sequence length of spectrogram i, and possibly the alignments.
|
83 |
+
"""
|
84 |
+
# Load the model on the first request.
|
85 |
+
if not self.is_loaded():
|
86 |
+
self.load()
|
87 |
+
|
88 |
+
# Preprocess text inputs
|
89 |
+
inputs = [text_to_sequence(text.strip(), hparams.tts_cleaner_names) for text in texts]
|
90 |
+
if not isinstance(embeddings, list):
|
91 |
+
embeddings = [embeddings]
|
92 |
+
|
93 |
+
# Batch inputs
|
94 |
+
batched_inputs = [inputs[i:i+hparams.synthesis_batch_size]
|
95 |
+
for i in range(0, len(inputs), hparams.synthesis_batch_size)]
|
96 |
+
batched_embeds = [embeddings[i:i+hparams.synthesis_batch_size]
|
97 |
+
for i in range(0, len(embeddings), hparams.synthesis_batch_size)]
|
98 |
+
|
99 |
+
specs = []
|
100 |
+
for i, batch in enumerate(batched_inputs, 1):
|
101 |
+
if self.verbose:
|
102 |
+
print(f"\n| Generating {i}/{len(batched_inputs)}")
|
103 |
+
|
104 |
+
# Pad texts so they are all the same length
|
105 |
+
text_lens = [len(text) for text in batch]
|
106 |
+
max_text_len = max(text_lens)
|
107 |
+
chars = [pad1d(text, max_text_len) for text in batch]
|
108 |
+
chars = np.stack(chars)
|
109 |
+
|
110 |
+
# Stack speaker embeddings into 2D array for batch processing
|
111 |
+
speaker_embeds = np.stack(batched_embeds[i-1])
|
112 |
+
|
113 |
+
# Convert to tensor
|
114 |
+
chars = torch.tensor(chars).long().to(self.device)
|
115 |
+
speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device)
|
116 |
+
|
117 |
+
# Inference
|
118 |
+
_, mels, alignments = self._model.generate(chars, speaker_embeddings)
|
119 |
+
mels = mels.detach().cpu().numpy()
|
120 |
+
for m in mels:
|
121 |
+
# Trim silence from end of each spectrogram
|
122 |
+
while np.max(m[:, -1]) < hparams.tts_stop_threshold:
|
123 |
+
m = m[:, :-1]
|
124 |
+
specs.append(m)
|
125 |
+
|
126 |
+
if self.verbose:
|
127 |
+
print("\n\nDone.\n")
|
128 |
+
return (specs, alignments) if return_alignments else specs
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def load_preprocess_wav(fpath):
|
132 |
+
"""
|
133 |
+
Loads and preprocesses an audio file under the same conditions the audio files were used to
|
134 |
+
train the synthesizer.
|
135 |
+
"""
|
136 |
+
print("Loading fpath and hparams.sample_rate :",str(fpath), hparams.sample_rate)
|
137 |
+
wav = librosa.load(str(fpath), hparams.sample_rate)[0]
|
138 |
+
if hparams.rescale:
|
139 |
+
wav = wav / np.abs(wav).max() * hparams.rescaling_max
|
140 |
+
return wav
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def make_spectrogram(fpath_or_wav: Union[str, Path, np.ndarray]):
|
144 |
+
"""
|
145 |
+
Creates a mel spectrogram from an audio file in the same manner as the mel spectrograms that
|
146 |
+
were fed to the synthesizer when training.
|
147 |
+
"""
|
148 |
+
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
|
149 |
+
wav = Synthesizer.load_preprocess_wav(fpath_or_wav)
|
150 |
+
else:
|
151 |
+
wav = fpath_or_wav
|
152 |
+
|
153 |
+
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32)
|
154 |
+
return mel_spectrogram
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
def griffin_lim(mel):
|
158 |
+
"""
|
159 |
+
Inverts a mel spectrogram using Griffin-Lim. The mel spectrogram is expected to have been built
|
160 |
+
with the same parameters present in hparams.py.
|
161 |
+
"""
|
162 |
+
return audio.inv_mel_spectrogram(mel, hparams)
|
163 |
+
|
164 |
+
|
165 |
+
def pad1d(x, max_len, pad_value=0):
|
166 |
+
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)
|