|
import argparse |
|
import torch |
|
from multiprocessing import cpu_count |
|
|
|
|
|
class Config: |
|
def __init__(self): |
|
self.device = "cuda:0" |
|
self.is_half = True |
|
self.n_cpu = 0 |
|
self.gpu_name = None |
|
self.gpu_mem = None |
|
( |
|
self.python_cmd, |
|
self.listen_port, |
|
self.colab, |
|
self.noparallel, |
|
self.noautoopen, |
|
self.api, |
|
self.json |
|
) = self.arg_parse() |
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
|
|
|
@staticmethod |
|
def arg_parse() -> tuple: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--port", type=int, default=7865, help="Listen port") |
|
parser.add_argument( |
|
"--pycmd", type=str, default="python", help="Python command" |
|
) |
|
parser.add_argument("--colab", action="store_true", help="Launch in colab") |
|
parser.add_argument( |
|
"--noparallel", action="store_true", help="Disable parallel processing" |
|
) |
|
parser.add_argument( |
|
"--noautoopen", |
|
action="store_true", |
|
help="Do not open in browser automatically", |
|
) |
|
parser.add_argument('--api', action="store_true", default=True) |
|
parser.add_argument("--json", action="store_true", default=False, help="use model_info.json") |
|
cmd_opts = parser.parse_args() |
|
|
|
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865 |
|
|
|
return ( |
|
cmd_opts.pycmd, |
|
cmd_opts.port, |
|
cmd_opts.colab, |
|
cmd_opts.noparallel, |
|
cmd_opts.noautoopen, |
|
cmd_opts.api, |
|
cmd_opts.json |
|
) |
|
|
|
def device_config(self) -> tuple: |
|
if torch.cuda.is_available(): |
|
i_device = int(self.device.split(":")[-1]) |
|
self.gpu_name = torch.cuda.get_device_name(i_device) |
|
if ( |
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
|
or "P40" in self.gpu_name.upper() |
|
or "1060" in self.gpu_name |
|
or "1070" in self.gpu_name |
|
or "1080" in self.gpu_name |
|
): |
|
print("16系/10系显卡和P40强制单精度") |
|
self.is_half = False |
|
for config_file in ["32k.json", "40k.json", "48k.json"]: |
|
with open(f"configs/{config_file}", "r") as f: |
|
strr = f.read().replace("true", "false") |
|
with open(f"configs/{config_file}", "w") as f: |
|
f.write(strr) |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
else: |
|
self.gpu_name = None |
|
self.gpu_mem = int( |
|
torch.cuda.get_device_properties(i_device).total_memory |
|
/ 1024 |
|
/ 1024 |
|
/ 1024 |
|
+ 0.4 |
|
) |
|
if self.gpu_mem <= 4: |
|
with open("trainset_preprocess_pipeline_print.py", "r") as f: |
|
strr = f.read().replace("3.7", "3.0") |
|
with open("trainset_preprocess_pipeline_print.py", "w") as f: |
|
f.write(strr) |
|
elif torch.backends.mps.is_available(): |
|
print("没有发现支持的N卡, 使用MPS进行推理") |
|
self.device = "mps" |
|
self.is_half = False |
|
else: |
|
print("没有发现支持的N卡, 使用CPU进行推理") |
|
self.device = "cpu" |
|
self.is_half = False |
|
|
|
if self.n_cpu == 0: |
|
self.n_cpu = cpu_count() |
|
|
|
if self.is_half: |
|
|
|
x_pad = 3 |
|
x_query = 10 |
|
x_center = 60 |
|
x_max = 65 |
|
else: |
|
|
|
x_pad = 1 |
|
x_query = 6 |
|
x_center = 38 |
|
x_max = 41 |
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4: |
|
x_pad = 1 |
|
x_query = 5 |
|
x_center = 30 |
|
x_max = 32 |
|
|
|
return x_pad, x_query, x_center, x_max |