Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
class SimpleCNN(nn.Module):
|
4 |
+
def __init__(self):
|
5 |
+
super(SimpleCNN, self).__init__()
|
6 |
+
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
|
7 |
+
self.relu1 = nn.ReLU()
|
8 |
+
self.pool1 = nn.MaxPool2d(2, 2)
|
9 |
+
|
10 |
+
self.conv2 = nn.Conv2d(16, 16, kernel_size=3, padding=1)
|
11 |
+
self.relu2 = nn.ReLU()
|
12 |
+
self.pool2 = nn.MaxPool2d(2, 2)
|
13 |
+
|
14 |
+
self.conv3 = nn.Conv2d(16, 16, kernel_size=3, padding=1)
|
15 |
+
self.relu3 = nn.ReLU()
|
16 |
+
self.pool3 = nn.MaxPool2d(2, 2)
|
17 |
+
|
18 |
+
self.conv4 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
|
19 |
+
self.relu4 = nn.ReLU()
|
20 |
+
self.pool4 = nn.MaxPool2d(2, 2)
|
21 |
+
|
22 |
+
self.fc1 = nn.Linear(32 * 2 * 2, 256)
|
23 |
+
self.fc2 = nn.Linear(256, 10)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.pool1(self.relu1(self.conv1(x)))
|
27 |
+
x = self.pool2(self.relu2(self.conv2(x)))
|
28 |
+
x = self.pool3(self.relu3(self.conv3(x)))
|
29 |
+
x = self.pool4(self.relu4(self.conv4(x)))
|
30 |
+
x = x.view(-1, 32 * 2 * 2)
|
31 |
+
x = self.relu4(self.fc1(x))
|
32 |
+
x = self.fc2(x)
|
33 |
+
|
34 |
+
return x
|