Spaces:
Sleeping
Sleeping
no message
Browse files- app.py +14 -59
- hf_bulk_image_classifier.code-workspace +29 -0
app.py
CHANGED
@@ -16,85 +16,44 @@ MAX_N_LABELS = 5
|
|
16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
17 |
|
18 |
COLS = st.columns([0.75, 0.25])
|
19 |
-
#SCROLLABLE_TEXT = COLS[1].text_area("Conteúdo da segunda coluna", height=500)
|
20 |
SCROLLABLE_TEXT = COLS[1].container(height=500)
|
21 |
|
22 |
|
23 |
-
|
24 |
-
def classify_one_image(classifier_model, dataset_to_classify):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#image_object = dataset[SPLIT_TO_CLASSIFY][i]["image"]
|
29 |
-
#st.image(image_object, caption="Uploaded Image", width=300)
|
30 |
-
|
31 |
-
|
32 |
-
#for i in range(len(dataset_to_classify)):
|
33 |
-
#for image in dataset_to_classify:
|
34 |
-
#image_object = dataset[SPLIT_TO_CLASSIFY][i]["image"]
|
35 |
-
#st.image(image_object, caption="Uploaded Image", width=300)
|
36 |
-
|
37 |
-
#st.write(f"Image classification: ", image['file'])
|
38 |
-
|
39 |
-
# image_path = image['file']
|
40 |
-
# img = Image.open(image_path)
|
41 |
-
# st.image(img, caption="Original image", use_column_width=True)
|
42 |
-
# results = classifier(image_path, top_k=MAX_N_LABELS)
|
43 |
-
# st.write(results)
|
44 |
-
# st.write("----")
|
45 |
-
|
46 |
-
return "done"
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
51 |
image_count = 0
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
#dataset
|
54 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
55 |
-
|
56 |
#Image teste load
|
57 |
image_object = dataset['pasta'][0]["image"]
|
58 |
-
|
59 |
SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300)
|
60 |
-
|
61 |
-
|
62 |
#modle instance
|
63 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
64 |
-
#COLS[1].write("### FLAG 4")
|
65 |
|
66 |
#classification
|
67 |
classification_result = classifier_pipeline(image_object)
|
68 |
SCROLLABLE_TEXT.write(classification_result)
|
69 |
-
|
70 |
-
#classification_array.append(classification_result)
|
71 |
|
72 |
-
#save classification
|
73 |
|
74 |
image_count += 1
|
75 |
SCROLLABLE_TEXT.write("Image count")
|
76 |
SCROLLABLE_TEXT.write(image_count)
|
77 |
-
return image_count
|
78 |
-
|
79 |
-
|
80 |
-
def make_template():
|
81 |
-
|
82 |
-
tile = CONTAINER_TOP.title(":balloon:")
|
83 |
-
tile.title(":balloon:")
|
84 |
-
|
85 |
-
with CONTAINER_FULL:
|
86 |
-
CONTAINER_TOP.title("titulo de teste dentro do container CONTAINER_TOP")
|
87 |
-
with CONTAINER_BODY:
|
88 |
-
#COL1, COL2 = st.columns([3, 1])
|
89 |
-
with COLS[1]:
|
90 |
-
CONTAINER_LOOP.write("### OUTPUT")
|
91 |
-
|
92 |
|
93 |
def main():
|
94 |
-
|
95 |
|
96 |
COLS[0].write("# Bulk Image Classification App")
|
97 |
-
|
98 |
|
99 |
#with CONTAINER_BODY:
|
100 |
with COLS[0]:
|
@@ -114,17 +73,13 @@ def main():
|
|
114 |
COLS[0].write(shosen_dataset_name)
|
115 |
|
116 |
#click to classify
|
117 |
-
#image_object = dataset['pasta'][0]
|
118 |
if chosen_model_name is not None and shosen_dataset_name is not None:
|
119 |
if COLS[0].button("Classify images"):
|
120 |
|
121 |
-
|
122 |
-
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
123 |
COLS[0].write("Classification result {classification_result}")
|
124 |
COLS[0].write(classification_result)
|
125 |
-
|
126 |
-
#st.write("# FLAG 6")
|
127 |
-
#st.write(classification_array)
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
main()
|
|
|
16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
17 |
|
18 |
COLS = st.columns([0.75, 0.25])
|
|
|
19 |
SCROLLABLE_TEXT = COLS[1].container(height=500)
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
23 |
image_count = 0
|
24 |
|
25 |
+
|
26 |
+
|
27 |
+
for i in range(len(dataset)):
|
28 |
+
image_object = dataset['pasta'][i]["image"]
|
29 |
+
SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300)
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
#dataset
|
34 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
35 |
+
|
36 |
#Image teste load
|
37 |
image_object = dataset['pasta'][0]["image"]
|
|
|
38 |
SCROLLABLE_TEXT.image(image_object, caption="Uploaded Image", width=300)
|
39 |
+
|
|
|
40 |
#modle instance
|
41 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
|
|
42 |
|
43 |
#classification
|
44 |
classification_result = classifier_pipeline(image_object)
|
45 |
SCROLLABLE_TEXT.write(classification_result)
|
46 |
+
|
|
|
47 |
|
48 |
+
#TODO save classification
|
49 |
|
50 |
image_count += 1
|
51 |
SCROLLABLE_TEXT.write("Image count")
|
52 |
SCROLLABLE_TEXT.write(image_count)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def main():
|
|
|
55 |
|
56 |
COLS[0].write("# Bulk Image Classification App")
|
|
|
57 |
|
58 |
#with CONTAINER_BODY:
|
59 |
with COLS[0]:
|
|
|
73 |
COLS[0].write(shosen_dataset_name)
|
74 |
|
75 |
#click to classify
|
|
|
76 |
if chosen_model_name is not None and shosen_dataset_name is not None:
|
77 |
if COLS[0].button("Classify images"):
|
78 |
|
79 |
+
classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
|
|
80 |
COLS[0].write("Classification result {classification_result}")
|
81 |
COLS[0].write(classification_result)
|
82 |
+
|
|
|
|
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
main()
|
hf_bulk_image_classifier.code-workspace
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"folders": [
|
3 |
+
{
|
4 |
+
"path": "."
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"settings": {
|
8 |
+
"workbench.colorCustomizations": {
|
9 |
+
"activityBar.activeBackground": "#fa1b49",
|
10 |
+
"activityBar.background": "#fa1b49",
|
11 |
+
"activityBar.foreground": "#e7e7e7",
|
12 |
+
"activityBar.inactiveForeground": "#e7e7e799",
|
13 |
+
"activityBarBadge.background": "#155e02",
|
14 |
+
"activityBarBadge.foreground": "#e7e7e7",
|
15 |
+
"commandCenter.border": "#e7e7e799",
|
16 |
+
"sash.hoverBorder": "#fa1b49",
|
17 |
+
"statusBar.background": "#dd0531",
|
18 |
+
"statusBar.foreground": "#e7e7e7",
|
19 |
+
"statusBarItem.hoverBackground": "#fa1b49",
|
20 |
+
"statusBarItem.remoteBackground": "#dd0531",
|
21 |
+
"statusBarItem.remoteForeground": "#e7e7e7",
|
22 |
+
"titleBar.activeBackground": "#dd0531",
|
23 |
+
"titleBar.activeForeground": "#e7e7e7",
|
24 |
+
"titleBar.inactiveBackground": "#dd053199",
|
25 |
+
"titleBar.inactiveForeground": "#e7e7e799"
|
26 |
+
},
|
27 |
+
"peacock.color": "#dd0531"
|
28 |
+
}
|
29 |
+
}
|