Spaces:
Sleeping
Sleeping
add fxn
Browse files- app.py +33 -14
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,39 +1,58 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
from pydantic import BaseModel
|
|
|
|
|
4 |
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Define the Pydantic models
|
7 |
class Ingredient(BaseModel):
|
|
|
8 |
quantity: str
|
9 |
unit: str
|
10 |
name: str
|
11 |
|
12 |
class Steps(BaseModel):
|
|
|
13 |
stepNumber: int
|
14 |
instruction: str
|
15 |
|
|
|
16 |
class ProduceRecipe(BaseModel):
|
|
|
17 |
mealName: str
|
18 |
-
ingredients:
|
19 |
-
steps:
|
|
|
20 |
|
21 |
-
# This is a placeholder for your actual function
|
22 |
def generate_recipe(meal_name: str, calories: int, meal_time: str) -> ProduceRecipe:
|
23 |
# This is where you'll implement your recipe generation logic
|
24 |
# For now, we'll return a dummy recipe
|
25 |
-
|
26 |
-
|
27 |
-
"
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
],
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
return
|
37 |
|
38 |
def format_recipe(recipe: ProduceRecipe) -> str:
|
39 |
formatted = f"<h2>{recipe.mealName}</h2>\n\n"
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
from pydantic import BaseModel
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from openai import OpenAI
|
6 |
from typing import List
|
7 |
+
import os
|
8 |
+
API_KEY = os.getenv('api_key')
|
9 |
+
|
10 |
+
client = OpenAI(
|
11 |
+
api_key=API_KEY
|
12 |
+
)
|
13 |
+
|
14 |
|
15 |
# Define the Pydantic models
|
16 |
class Ingredient(BaseModel):
|
17 |
+
"""An ingredient for a recipe"""
|
18 |
quantity: str
|
19 |
unit: str
|
20 |
name: str
|
21 |
|
22 |
class Steps(BaseModel):
|
23 |
+
"""Steps to make a recipe"""
|
24 |
stepNumber: int
|
25 |
instruction: str
|
26 |
|
27 |
+
|
28 |
class ProduceRecipe(BaseModel):
|
29 |
+
"""Makes a recipe for a meal"""
|
30 |
mealName: str
|
31 |
+
ingredients: list[Ingredient]
|
32 |
+
steps : list[Steps]
|
33 |
+
|
34 |
|
|
|
35 |
def generate_recipe(meal_name: str, calories: int, meal_time: str) -> ProduceRecipe:
|
36 |
# This is where you'll implement your recipe generation logic
|
37 |
# For now, we'll return a dummy recipe
|
38 |
+
|
39 |
+
meal_template = f'''
|
40 |
+
"role": "user", "content": "Create a recipe for a {meal_time} of {meal_name} with the following ingredients that is roughly {calories} calories."
|
41 |
+
'''
|
42 |
+
|
43 |
+
|
44 |
+
completion = client.beta.chat.completions.parse(
|
45 |
+
model="gpt-4o-2024-08-06",
|
46 |
+
messages=[
|
47 |
+
{"role": "system", "content": "You are an expert chef and nutritionalist. You will be given a meal request and should convert it into a structured Recipe at the correct calories."},
|
48 |
+
{"role": "user", "content": meal_template}
|
49 |
],
|
50 |
+
response_format=ProduceRecipe,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
recipe = completion.choices[0].message.parsed
|
55 |
+
return recipe
|
56 |
|
57 |
def format_recipe(recipe: ProduceRecipe) -> str:
|
58 |
formatted = f"<h2>{recipe.mealName}</h2>\n\n"
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
pydantic
|