Spaces:
Sleeping
Sleeping
Create app3.py
Browse files
app3.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import io
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from fastapi import FastAPI, UploadFile, File
|
| 6 |
+
from fastapi.responses import JSONResponse
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch
|
| 10 |
+
import os
|
| 11 |
+
import uvicorn
|
| 12 |
+
from fastapi import FastAPI, UploadFile
|
| 13 |
+
from fastapi.responses import StreamingResponse, JSONResponse
|
| 14 |
+
from detectron2.engine import DefaultPredictor
|
| 15 |
+
from detectron2.config import get_cfg
|
| 16 |
+
from detectron2 import model_zoo
|
| 17 |
+
from detectron2.data import MetadataCatalog
|
| 18 |
+
from sam2.build_sam import build_sam2
|
| 19 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 20 |
+
from hydra import initialize, compose
|
| 21 |
+
from hydra.core.global_hydra import GlobalHydra
|
| 22 |
+
# -------------------
|
| 23 |
+
# Detectron2 setup
|
| 24 |
+
# -------------------
|
| 25 |
+
det_cfg = get_cfg()
|
| 26 |
+
det_cfg.merge_from_file(
|
| 27 |
+
model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
|
| 28 |
+
)
|
| 29 |
+
det_cfg.MODEL.WEIGHTS = "/app/model_final.pth" # your trained weights
|
| 30 |
+
det_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
| 31 |
+
det_cfg.MODEL.DEVICE = "cpu" # Hugging Face free tier is CPU only
|
| 32 |
+
det_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
| 33 |
+
|
| 34 |
+
# Register class metadata
|
| 35 |
+
MetadataCatalog.get("__unused__").thing_classes = ["toproof"]
|
| 36 |
+
|
| 37 |
+
predictor = DefaultPredictor(det_cfg)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# -------------------
|
| 41 |
+
# SAM2 setup
|
| 42 |
+
# -------------------
|
| 43 |
+
os.chdir("/app") # ensure hydra looks in the right place
|
| 44 |
+
if GlobalHydra.instance().is_initialized():
|
| 45 |
+
GlobalHydra.instance().clear()
|
| 46 |
+
|
| 47 |
+
# Make sure the filename matches your repo (sam2_1_hiera_l.yaml)
|
| 48 |
+
with initialize(version_base=None, config_path="."):
|
| 49 |
+
sam2_model = build_sam2("sam2.1_hiera_l.yaml", "sam2.1_hiera_large.pt", device="cpu")
|
| 50 |
+
|
| 51 |
+
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 52 |
+
|
| 53 |
+
# -------------------
|
| 54 |
+
# FastAPI app
|
| 55 |
+
# -------------------
|
| 56 |
+
app = FastAPI()
|
| 57 |
+
app.add_middleware(
|
| 58 |
+
CORSMiddleware,
|
| 59 |
+
allow_origins=["*"], allow_credentials=True,
|
| 60 |
+
allow_methods=["*"], allow_headers=["*"],
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
@app.get("/")
|
| 64 |
+
def home():
|
| 65 |
+
return {"status": "running"}
|
| 66 |
+
|
| 67 |
+
# -------------------
|
| 68 |
+
# Helpers
|
| 69 |
+
# -------------------
|
| 70 |
+
def _largest_contour(mask):
|
| 71 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 72 |
+
if not contours:
|
| 73 |
+
return None
|
| 74 |
+
return max(contours, key=cv2.contourArea)
|
| 75 |
+
|
| 76 |
+
def _min_area_rect_to_poly(cnt):
|
| 77 |
+
rect = cv2.minAreaRect(cnt)
|
| 78 |
+
box = cv2.boxPoints(rect)
|
| 79 |
+
return box.astype(np.float32).reshape(-1,1,2)
|
| 80 |
+
|
| 81 |
+
def mask_to_polygon_no_holes(mask, epsilon_factor=0.005, min_area=150):
|
| 82 |
+
if mask.dtype != np.uint8:
|
| 83 |
+
if mask.max() <= 1: # case: 0/1
|
| 84 |
+
mask = (mask * 255).astype(np.uint8)
|
| 85 |
+
else:
|
| 86 |
+
mask = mask.astype(np.uint8)
|
| 87 |
+
|
| 88 |
+
mask = (mask > 0).astype(np.uint8) * 255
|
| 89 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 90 |
+
if not contours:
|
| 91 |
+
return None
|
| 92 |
+
contour = max(contours, key=cv2.contourArea)
|
| 93 |
+
if cv2.contourArea(contour) < min_area:
|
| 94 |
+
return None
|
| 95 |
+
epsilon = epsilon_factor * cv2.arcLength(contour, True)
|
| 96 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
| 97 |
+
return approx
|
| 98 |
+
|
| 99 |
+
def clean_polygon_strict(mask, epsilon_factor=0.01, min_area=150):
|
| 100 |
+
if mask.dtype != np.uint8:
|
| 101 |
+
if mask.max() <= 1:
|
| 102 |
+
mask = (mask * 255).astype(np.uint8)
|
| 103 |
+
else:
|
| 104 |
+
mask = mask.astype(np.uint8)
|
| 105 |
+
|
| 106 |
+
bw = (mask > 127).astype(np.uint8) * 255
|
| 107 |
+
cnt = _largest_contour(bw)
|
| 108 |
+
if cnt is None:
|
| 109 |
+
return None, "No contour"
|
| 110 |
+
|
| 111 |
+
rect_poly = _min_area_rect_to_poly(cnt)
|
| 112 |
+
polyB = mask_to_polygon_no_holes(bw, epsilon_factor=epsilon_factor, min_area=min_area)
|
| 113 |
+
|
| 114 |
+
if rect_poly is not None and polyB is not None:
|
| 115 |
+
rect_area = cv2.contourArea(rect_poly)
|
| 116 |
+
contour_area = cv2.contourArea(cnt)
|
| 117 |
+
area_ratio = rect_area / contour_area if contour_area > 0 else 0
|
| 118 |
+
|
| 119 |
+
# 🔹 If polygon has > 4 sides → prefer Candidate B
|
| 120 |
+
if len(polyB) > 4:
|
| 121 |
+
return polyB, "Candidate B (Polygon)"
|
| 122 |
+
|
| 123 |
+
# 🔹 Stricter rectangle test
|
| 124 |
+
if 0.95 < area_ratio < 1.05 and len(polyB) == 4:
|
| 125 |
+
return rect_poly, "Candidate A (Rectangle)"
|
| 126 |
+
else:
|
| 127 |
+
return polyB, "Candidate B (Polygon)"
|
| 128 |
+
|
| 129 |
+
elif rect_poly is not None:
|
| 130 |
+
return rect_poly, "Candidate A (Rectangle)"
|
| 131 |
+
elif polyB is not None:
|
| 132 |
+
return polyB, "Candidate B (Polygon)"
|
| 133 |
+
else:
|
| 134 |
+
return None, "No polygon"
|
| 135 |
+
|
| 136 |
+
# -------------------
|
| 137 |
+
# API Endpoint
|
| 138 |
+
# -------------------
|
| 139 |
+
@app.post("/polygon")
|
| 140 |
+
async def polygon_endpoint(file: UploadFile = File(...)):
|
| 141 |
+
contents = await file.read()
|
| 142 |
+
im = np.array(Image.open(io.BytesIO(contents)).convert("RGB"))
|
| 143 |
+
|
| 144 |
+
# --- Step 1: Mask R-CNN ---
|
| 145 |
+
outputs = predictor(im) # use the Detectron2 predictor you set up
|
| 146 |
+
instances = outputs["instances"].to("cpu")
|
| 147 |
+
|
| 148 |
+
boxes = instances.pred_boxes.tensor.numpy()
|
| 149 |
+
masks = instances.pred_masks.numpy()
|
| 150 |
+
|
| 151 |
+
if len(masks) == 0:
|
| 152 |
+
return JSONResponse(content={"chosen": "No mask found", "polygon": None, "image": None})
|
| 153 |
+
|
| 154 |
+
# --- Step 2: SAM2 Refinement ---
|
| 155 |
+
refined_all = []
|
| 156 |
+
sam2_predictor.set_image(im)
|
| 157 |
+
|
| 158 |
+
for i, box in enumerate(boxes):
|
| 159 |
+
mask_rcnn = (masks[i].astype(np.uint8) * 255)
|
| 160 |
+
|
| 161 |
+
sam_masks, sam_scores, _ = sam2_predictor.predict(
|
| 162 |
+
box=box[None, :], multimask_output=True
|
| 163 |
+
)
|
| 164 |
+
best_idx = np.argmax(sam_scores)
|
| 165 |
+
sam_mask = (sam_masks[best_idx].astype(np.uint8) * 255)
|
| 166 |
+
|
| 167 |
+
# Clean SAM2 mask
|
| 168 |
+
sam_clean = cv2.morphologyEx(sam_mask, cv2.MORPH_CLOSE, np.ones((3,3), np.uint8))
|
| 169 |
+
sam_clean = cv2.GaussianBlur(sam_clean, (3,3), 0)
|
| 170 |
+
_, sam_clean = cv2.threshold(sam_clean, 127, 255, cv2.THRESH_BINARY)
|
| 171 |
+
|
| 172 |
+
# --- Step 3: Fusion ---
|
| 173 |
+
mask_rcnn_dilated = cv2.dilate(mask_rcnn, np.ones((5,5), np.uint8), iterations=1)
|
| 174 |
+
combined = cv2.bitwise_and(mask_rcnn_dilated, sam_clean)
|
| 175 |
+
|
| 176 |
+
# --- Step 4: Final polygonization ---
|
| 177 |
+
poly, chosen = clean_polygon_strict(combined)
|
| 178 |
+
refined_all.append((combined, poly, chosen))
|
| 179 |
+
|
| 180 |
+
# Take first polygon for demo
|
| 181 |
+
if not refined_all or refined_all[0][1] is None:
|
| 182 |
+
return JSONResponse(content={"chosen": "No polygon", "polygon": None, "image": None})
|
| 183 |
+
|
| 184 |
+
combined, final_poly, chosen = refined_all[0]
|
| 185 |
+
|
| 186 |
+
# --- Step 5: Preview overlay ---
|
| 187 |
+
overlay = im.copy()
|
| 188 |
+
cv2.polylines(overlay, [final_poly.astype(np.int32)], True, (0,0,255), 2)
|
| 189 |
+
_, buffer = cv2.imencode(".png", overlay)
|
| 190 |
+
img_b64 = base64.b64encode(buffer).decode("utf-8")
|
| 191 |
+
|
| 192 |
+
return {
|
| 193 |
+
"chosen": chosen,
|
| 194 |
+
"polygon": final_poly.reshape(-1, 2).tolist(),
|
| 195 |
+
"image": img_b64
|
| 196 |
+
}
|