Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from http.server import HTTPServer, SimpleHTTPRequestHandler | |
from multiprocessing import Process | |
import subprocess | |
from transformers import RobertaForSequenceClassification, RobertaTokenizer | |
import json | |
import fire | |
import torch | |
import re | |
from urllib.parse import urlparse, unquote, parse_qs, urlencode | |
model: RobertaForSequenceClassification = None | |
tokenizer: RobertaTokenizer = None | |
device: str = None | |
# Remove spaces query params from query | |
regex = r"__theme=(.+)" | |
def log(*args): | |
print(f"[{os.environ.get('RANK', '')}]", *args, file=sys.stderr) | |
class RequestHandler(SimpleHTTPRequestHandler): | |
def do_POST(self): | |
self.begin_content('application/json,charset=UTF-8') | |
content_length = int(self.headers['Content-Length']) | |
if content_length > 0: | |
post_data = self.rfile.read(content_length).decode('utf-8') | |
try: | |
post_data = json.loads(post_data) | |
if 'text' not in post_data: | |
self.wfile.write(json.dumps({"error": "missing key 'text'"}).encode('utf-8')) | |
else: | |
all_tokens, used_tokens, fake, real = self.infer(post_data['text']) | |
self.wfile.write(json.dumps(dict( | |
all_tokens=all_tokens, | |
used_tokens=used_tokens, | |
real_probability=real, | |
fake_probability=fake | |
)).encode('utf-8')) | |
except Exception as e: | |
self.wfile.write(json.dumps({"error": str(e)}).encode('utf-8')) | |
def do_GET(self): | |
query = urlparse(self.path).query | |
query = re.sub(regex, "", query, 0, re.MULTILINE) | |
query = unquote(query) | |
if not query: | |
self.begin_content('text/html') | |
html = os.path.join(os.path.dirname(__file__), 'index.html') | |
self.wfile.write(open(html).read().encode()) | |
return | |
self.begin_content('application/json;charset=UTF-8') | |
all_tokens, used_tokens, fake, real = self.infer(query) | |
self.wfile.write(json.dumps(dict( | |
all_tokens=all_tokens, | |
used_tokens=used_tokens, | |
real_probability=real, | |
fake_probability=fake | |
)).encode()) | |
def infer(self, query): | |
tokens = tokenizer.encode(query) | |
all_tokens = len(tokens) | |
tokens = tokens[:tokenizer.max_len - 2] | |
used_tokens = len(tokens) | |
tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0) | |
mask = torch.ones_like(tokens) | |
with torch.no_grad(): | |
logits = model(tokens.to(device), attention_mask=mask.to(device))[0] | |
probs = logits.softmax(dim=-1) | |
fake, real = probs.detach().cpu().flatten().numpy().tolist() | |
return all_tokens, used_tokens, fake, real | |
def begin_content(self, content_type): | |
self.send_response(200) | |
self.send_header('Content-Type', content_type) | |
self.send_header('Access-Control-Allow-Origin', '*') | |
self.end_headers() | |
def log_message(self, format, *args): | |
log(format % args) | |
def serve_forever(server, model, tokenizer, device): | |
log('Process has started; loading the model ...') | |
globals()['model'] = model.to(device) | |
globals()['tokenizer'] = tokenizer | |
globals()['device'] = device | |
log(f'Ready to serve at http://localhost:{server.server_address[1]}') | |
server.serve_forever() | |
def main(checkpoint, port=8080, device='cuda' if torch.cuda.is_available() else 'cpu'): | |
if checkpoint.startswith('gs://'): | |
print(f'Downloading {checkpoint}', file=sys.stderr) | |
subprocess.check_output(['gsutil', 'cp', checkpoint, '.']) | |
checkpoint = os.path.basename(checkpoint) | |
assert os.path.isfile(checkpoint) | |
print(f'Loading checkpoint from {checkpoint}') | |
data = torch.load(checkpoint, map_location='cpu') | |
model_name = 'roberta-large' if data['args']['large'] else 'roberta-base' | |
model = RobertaForSequenceClassification.from_pretrained(model_name) | |
tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
model.load_state_dict(data['model_state_dict']) | |
model.eval() | |
print(f'Starting HTTP server on port {port}', file=sys.stderr) | |
server = HTTPServer(('0.0.0.0', port), RequestHandler) | |
# avoid calling CUDA API before forking; doing so in a subprocess is fine. | |
num_workers = int(subprocess.check_output([sys.executable, '-c', 'import torch; print(torch.cuda.device_count())'])) | |
if num_workers <= 1: | |
serve_forever(server, model, tokenizer, device) | |
else: | |
print(f'Launching {num_workers} worker processes...') | |
subprocesses = [] | |
for i in range(num_workers): | |
os.environ['RANK'] = f'{i}' | |
os.environ['CUDA_VISIBLE_DEVICES'] = f'{i}' | |
process = Process(target=serve_forever, args=(server, model, tokenizer, device)) | |
process.start() | |
subprocesses.append(process) | |
del os.environ['RANK'] | |
del os.environ['CUDA_VISIBLE_DEVICES'] | |
for process in subprocesses: | |
process.join() | |
if __name__ == '__main__': | |
fire.Fire(main) | |