openai-detector / detector /download.py
NotTheDr01ds's picture
Duplicate from openai/openai-detector
c553f8c
import os
import requests
import torch.distributed as dist
from tqdm import tqdm
from .utils import distributed
ALL_DATASETS = [
'webtext',
'small-117M', 'small-117M-k40', 'small-117M-nucleus',
'medium-345M', 'medium-345M-k40', 'medium-345M-nucleus',
'large-762M', 'large-762M-k40', 'large-762M-nucleus',
'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus'
]
def download(*datasets, data_dir='data'):
os.makedirs(data_dir, exist_ok=True)
if distributed() and dist.get_rank() > 0:
dist.barrier()
for ds in datasets:
assert ds in ALL_DATASETS, f'Unknown dataset {ds}'
for split in ['train', 'valid', 'test']:
filename = ds + "." + split + '.jsonl'
output_file = os.path.join(data_dir, filename)
if os.path.isfile(output_file):
continue
r = requests.get("https://storage.googleapis.com/gpt-2/output-dataset/v1/" + filename, stream=True)
with open(output_file, 'wb') as f:
file_size = int(r.headers["content-length"])
chunk_size = 1000
with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
# 1k for chunk_size, since Ethernet packet size is around 1500 bytes
for chunk in r.iter_content(chunk_size=chunk_size):
f.write(chunk)
pbar.update(chunk_size)
if distributed() and dist.get_rank() == 0:
dist.barrier()
if __name__ == '__main__':
download(*ALL_DATASETS)