Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,27 +1,18 @@
|
|
| 1 |
-
"""
|
| 2 |
-
E3Diff: High-Resolution SAR-to-Optical Translation
|
| 3 |
-
HuggingFace Spaces Deployment
|
| 4 |
-
|
| 5 |
-
Features:
|
| 6 |
-
- Full resolution processing with seamless tiling
|
| 7 |
-
- Proper diffusion sampling (matching local inference)
|
| 8 |
-
- TIFF output support
|
| 9 |
-
"""
|
| 10 |
|
| 11 |
import os
|
| 12 |
-
import sys
|
| 13 |
import torch
|
| 14 |
-
import torch.nn as nn
|
| 15 |
-
import torch.nn.functional as F
|
| 16 |
import numpy as np
|
| 17 |
from PIL import Image, ImageEnhance
|
| 18 |
import gradio as gr
|
| 19 |
-
from pathlib import Path
|
| 20 |
import tempfile
|
| 21 |
import time
|
| 22 |
-
from functools import partial
|
| 23 |
from huggingface_hub import hf_hub_download
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# ZeroGPU support
|
| 26 |
try:
|
| 27 |
import spaces
|
|
@@ -30,442 +21,10 @@ except ImportError:
|
|
| 30 |
GPU_AVAILABLE = False
|
| 31 |
spaces = None
|
| 32 |
|
| 33 |
-
# ============================================================================
|
| 34 |
-
# SoftPool Implementation (Pure PyTorch)
|
| 35 |
-
# ============================================================================
|
| 36 |
-
|
| 37 |
-
def soft_pool2d(x, kernel_size=(2, 2), stride=None, force_inplace=False):
|
| 38 |
-
if stride is None:
|
| 39 |
-
stride = kernel_size
|
| 40 |
-
if isinstance(kernel_size, int):
|
| 41 |
-
kernel_size = (kernel_size, kernel_size)
|
| 42 |
-
if isinstance(stride, int):
|
| 43 |
-
stride = (stride, stride)
|
| 44 |
-
|
| 45 |
-
batch, channels, height, width = x.shape
|
| 46 |
-
kh, kw = kernel_size
|
| 47 |
-
sh, sw = stride
|
| 48 |
-
out_h = (height - kh) // sh + 1
|
| 49 |
-
out_w = (width - kw) // sw + 1
|
| 50 |
-
|
| 51 |
-
x_unfold = F.unfold(x, kernel_size=kernel_size, stride=stride)
|
| 52 |
-
x_unfold = x_unfold.view(batch, channels, kh * kw, out_h * out_w)
|
| 53 |
-
x_max = x_unfold.max(dim=2, keepdim=True)[0]
|
| 54 |
-
exp_x = torch.exp(x_unfold - x_max)
|
| 55 |
-
softpool = (x_unfold * exp_x).sum(dim=2) / (exp_x.sum(dim=2) + 1e-8)
|
| 56 |
-
return softpool.view(batch, channels, out_h, out_w)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
class SoftPool2d(nn.Module):
|
| 60 |
-
def __init__(self, kernel_size=(2, 2), stride=None, force_inplace=False):
|
| 61 |
-
super(SoftPool2d, self).__init__()
|
| 62 |
-
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size)
|
| 63 |
-
self.stride = stride if stride is not None else self.kernel_size
|
| 64 |
-
|
| 65 |
-
def forward(self, x):
|
| 66 |
-
return soft_pool2d(x, self.kernel_size, self.stride)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
# Monkey-patch SoftPool
|
| 70 |
-
class SoftPoolModule:
|
| 71 |
-
soft_pool2d = staticmethod(soft_pool2d)
|
| 72 |
-
SoftPool2d = SoftPool2d
|
| 73 |
-
sys.modules['SoftPool'] = SoftPoolModule()
|
| 74 |
-
|
| 75 |
-
# ============================================================================
|
| 76 |
-
# Model Architecture
|
| 77 |
-
# ============================================================================
|
| 78 |
-
|
| 79 |
-
import math
|
| 80 |
-
from inspect import isfunction
|
| 81 |
-
|
| 82 |
-
def exists(x):
|
| 83 |
-
return x is not None
|
| 84 |
-
|
| 85 |
-
def default(val, d):
|
| 86 |
-
if exists(val):
|
| 87 |
-
return val
|
| 88 |
-
return d() if isfunction(d) else d
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
class PositionalEncoding(nn.Module):
|
| 92 |
-
def __init__(self, dim):
|
| 93 |
-
super().__init__()
|
| 94 |
-
self.dim = dim
|
| 95 |
-
|
| 96 |
-
def forward(self, noise_level):
|
| 97 |
-
count = self.dim // 2
|
| 98 |
-
step = torch.arange(count, dtype=noise_level.dtype, device=noise_level.device) / count
|
| 99 |
-
encoding = noise_level.unsqueeze(1) * torch.exp(-math.log(1e4) * step.unsqueeze(0))
|
| 100 |
-
encoding = torch.cat([torch.sin(encoding), torch.cos(encoding)], dim=-1)
|
| 101 |
-
return encoding
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
class Swish(nn.Module):
|
| 105 |
-
def forward(self, x):
|
| 106 |
-
return x * torch.sigmoid(x)
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
class FeatureWiseAffine(nn.Module):
|
| 110 |
-
def __init__(self, in_channels, out_channels, use_affine_level=False):
|
| 111 |
-
super(FeatureWiseAffine, self).__init__()
|
| 112 |
-
self.use_affine_level = use_affine_level
|
| 113 |
-
self.noise_func = nn.Sequential(nn.Linear(in_channels, out_channels*(1+self.use_affine_level)))
|
| 114 |
-
|
| 115 |
-
def forward(self, x, noise_embed):
|
| 116 |
-
batch = x.shape[0]
|
| 117 |
-
if self.use_affine_level:
|
| 118 |
-
gamma, beta = self.noise_func(noise_embed).view(batch, -1, 1, 1).chunk(2, dim=1)
|
| 119 |
-
x = (1 + gamma) * x + beta
|
| 120 |
-
else:
|
| 121 |
-
x = x + self.noise_func(noise_embed).view(batch, -1, 1, 1)
|
| 122 |
-
return x
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
class Upsample(nn.Module):
|
| 126 |
-
def __init__(self, dim):
|
| 127 |
-
super().__init__()
|
| 128 |
-
self.up = nn.Upsample(scale_factor=2, mode="nearest")
|
| 129 |
-
self.conv = nn.Conv2d(dim, dim, 3, padding=1)
|
| 130 |
-
|
| 131 |
-
def forward(self, x):
|
| 132 |
-
return self.conv(self.up(x))
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
class Downsample(nn.Module):
|
| 136 |
-
def __init__(self, dim):
|
| 137 |
-
super().__init__()
|
| 138 |
-
self.conv = nn.Conv2d(dim, dim, 3, 2, 1)
|
| 139 |
-
|
| 140 |
-
def forward(self, x):
|
| 141 |
-
return self.conv(x)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
class Block(nn.Module):
|
| 145 |
-
def __init__(self, dim, dim_out, groups=32, dropout=0, stride=1):
|
| 146 |
-
super().__init__()
|
| 147 |
-
self.block = nn.Sequential(
|
| 148 |
-
nn.GroupNorm(groups, dim),
|
| 149 |
-
Swish(),
|
| 150 |
-
nn.Dropout(dropout) if dropout != 0 else nn.Identity(),
|
| 151 |
-
nn.Conv2d(dim, dim_out, 3, stride=stride, padding=1)
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
def forward(self, x):
|
| 155 |
-
return self.block(x)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
class ResnetBlock(nn.Module):
|
| 159 |
-
def __init__(self, dim, dim_out, noise_level_emb_dim=None, dropout=0, use_affine_level=False, norm_groups=32):
|
| 160 |
-
super().__init__()
|
| 161 |
-
self.noise_func = FeatureWiseAffine(noise_level_emb_dim, dim_out, use_affine_level)
|
| 162 |
-
self.c_func = nn.Conv2d(dim_out, dim_out, 1)
|
| 163 |
-
self.block1 = Block(dim, dim_out, groups=norm_groups)
|
| 164 |
-
self.block2 = Block(dim_out, dim_out, groups=norm_groups, dropout=dropout)
|
| 165 |
-
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
| 166 |
-
|
| 167 |
-
def forward(self, x, time_emb, c):
|
| 168 |
-
h = self.block1(x)
|
| 169 |
-
h = self.noise_func(h, time_emb)
|
| 170 |
-
h = self.block2(h)
|
| 171 |
-
# Resize condition features to match spatial size
|
| 172 |
-
if c.shape[2:] != h.shape[2:]:
|
| 173 |
-
c = F.interpolate(c, size=h.shape[2:], mode='bilinear', align_corners=False)
|
| 174 |
-
h = self.c_func(c) + h
|
| 175 |
-
return h + self.res_conv(x)
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
class SelfAttention(nn.Module):
|
| 179 |
-
def __init__(self, in_channel, n_head=1, norm_groups=32):
|
| 180 |
-
super().__init__()
|
| 181 |
-
self.n_head = n_head
|
| 182 |
-
self.norm = nn.GroupNorm(norm_groups, in_channel)
|
| 183 |
-
self.qkv = nn.Conv2d(in_channel, in_channel * 3, 1, bias=False)
|
| 184 |
-
self.out = nn.Conv2d(in_channel, in_channel, 1)
|
| 185 |
-
|
| 186 |
-
def forward(self, input, t=None, save_flag=None, file_num=None):
|
| 187 |
-
batch, channel, height, width = input.shape
|
| 188 |
-
n_head = self.n_head
|
| 189 |
-
head_dim = channel // n_head
|
| 190 |
-
norm = self.norm(input)
|
| 191 |
-
qkv = self.qkv(norm).view(batch, n_head, head_dim * 3, height, width)
|
| 192 |
-
query, key, value = qkv.chunk(3, dim=2)
|
| 193 |
-
attn = torch.einsum("bnchw, bncyx -> bnhwyx", query, key).contiguous() / math.sqrt(channel)
|
| 194 |
-
attn = attn.view(batch, n_head, height, width, -1)
|
| 195 |
-
attn = torch.softmax(attn, -1)
|
| 196 |
-
attn = attn.view(batch, n_head, height, width, height, width)
|
| 197 |
-
out = torch.einsum("bnhwyx, bncyx -> bnchw", attn, value).contiguous()
|
| 198 |
-
out = self.out(out.view(batch, channel, height, width))
|
| 199 |
-
return out + input
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
class ResnetBlocWithAttn(nn.Module):
|
| 203 |
-
def __init__(self, dim, dim_out, *, noise_level_emb_dim=None, norm_groups=32, dropout=0, with_attn=False, size=256):
|
| 204 |
-
super().__init__()
|
| 205 |
-
self.with_attn = with_attn
|
| 206 |
-
self.res_block = ResnetBlock(dim, dim_out, noise_level_emb_dim, norm_groups=norm_groups, dropout=dropout)
|
| 207 |
-
if with_attn:
|
| 208 |
-
self.attn = SelfAttention(dim_out, norm_groups=norm_groups)
|
| 209 |
-
|
| 210 |
-
def forward(self, x, time_emb, c):
|
| 211 |
-
x = self.res_block(x, time_emb, c)
|
| 212 |
-
if self.with_attn:
|
| 213 |
-
x = self.attn(x, time_emb)
|
| 214 |
-
return x
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
# CPEN Condition Encoder
|
| 218 |
-
class CPEN(nn.Module):
|
| 219 |
-
def __init__(self, inchannel=3):
|
| 220 |
-
super(CPEN, self).__init__()
|
| 221 |
-
from SoftPool import SoftPool2d
|
| 222 |
-
|
| 223 |
-
self.conv1 = nn.Conv2d(inchannel, 64, 3, 1, 1)
|
| 224 |
-
self.pool1 = SoftPool2d(kernel_size=(2, 2), stride=(2, 2))
|
| 225 |
-
self.conv2 = nn.Conv2d(64, 128, 3, 1, 1)
|
| 226 |
-
self.pool2 = SoftPool2d(kernel_size=(2, 2), stride=(2, 2))
|
| 227 |
-
self.conv3 = nn.Conv2d(128, 256, 3, 1, 1)
|
| 228 |
-
self.pool3 = SoftPool2d(kernel_size=(2, 2), stride=(2, 2))
|
| 229 |
-
self.conv4 = nn.Conv2d(256, 512, 3, 1, 1)
|
| 230 |
-
self.pool4 = SoftPool2d(kernel_size=(2, 2), stride=(2, 2))
|
| 231 |
-
self.conv5 = nn.Conv2d(512, 1024, 3, 1, 1)
|
| 232 |
-
|
| 233 |
-
def forward(self, x):
|
| 234 |
-
c1 = self.pool1(F.leaky_relu(self.conv1(x)))
|
| 235 |
-
c2 = self.pool2(F.leaky_relu(self.conv2(c1)))
|
| 236 |
-
c3 = self.pool3(F.leaky_relu(self.conv3(c2)))
|
| 237 |
-
c4 = self.pool4(F.leaky_relu(self.conv4(c3)))
|
| 238 |
-
c5 = F.leaky_relu(self.conv5(c4))
|
| 239 |
-
return c1, c2, c3, c4, c5
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
class UNet(nn.Module):
|
| 243 |
-
def __init__(self, in_channel=6, out_channel=3, inner_channel=32, norm_groups=32,
|
| 244 |
-
channel_mults=(1, 2, 4, 8, 8), attn_res=(8,), res_blocks=3, dropout=0,
|
| 245 |
-
with_noise_level_emb=True, image_size=128, condition_ch=3):
|
| 246 |
-
super().__init__()
|
| 247 |
-
|
| 248 |
-
self.res_blocks = res_blocks
|
| 249 |
-
noise_level_channel = inner_channel
|
| 250 |
-
self.noise_level_mlp = nn.Sequential(
|
| 251 |
-
PositionalEncoding(inner_channel),
|
| 252 |
-
nn.Linear(inner_channel, inner_channel * 4),
|
| 253 |
-
Swish(),
|
| 254 |
-
nn.Linear(inner_channel * 4, inner_channel)
|
| 255 |
-
) if with_noise_level_emb else None
|
| 256 |
-
|
| 257 |
-
num_mults = len(channel_mults)
|
| 258 |
-
pre_channel = inner_channel
|
| 259 |
-
feat_channels = [pre_channel]
|
| 260 |
-
now_res = image_size
|
| 261 |
-
|
| 262 |
-
downs = [nn.Conv2d(in_channel, inner_channel, kernel_size=3, padding=1)]
|
| 263 |
-
for ind in range(num_mults):
|
| 264 |
-
is_last = (ind == num_mults - 1)
|
| 265 |
-
use_attn = (now_res in attn_res)
|
| 266 |
-
channel_mult = inner_channel * channel_mults[ind]
|
| 267 |
-
for _ in range(0, res_blocks):
|
| 268 |
-
downs.append(ResnetBlocWithAttn(pre_channel, channel_mult, noise_level_emb_dim=noise_level_channel,
|
| 269 |
-
norm_groups=norm_groups, dropout=dropout, with_attn=use_attn, size=now_res))
|
| 270 |
-
feat_channels.append(channel_mult)
|
| 271 |
-
pre_channel = channel_mult
|
| 272 |
-
if not is_last:
|
| 273 |
-
downs.append(Downsample(pre_channel))
|
| 274 |
-
feat_channels.append(pre_channel)
|
| 275 |
-
now_res = now_res // 2
|
| 276 |
-
self.downs = nn.ModuleList(downs)
|
| 277 |
-
|
| 278 |
-
self.mid = nn.ModuleList([
|
| 279 |
-
ResnetBlocWithAttn(pre_channel, pre_channel, noise_level_emb_dim=noise_level_channel,
|
| 280 |
-
norm_groups=norm_groups, dropout=dropout, with_attn=True, size=now_res),
|
| 281 |
-
ResnetBlocWithAttn(pre_channel, pre_channel, noise_level_emb_dim=noise_level_channel,
|
| 282 |
-
norm_groups=norm_groups, dropout=dropout, with_attn=False, size=now_res)
|
| 283 |
-
])
|
| 284 |
-
|
| 285 |
-
ups = []
|
| 286 |
-
for ind in reversed(range(num_mults)):
|
| 287 |
-
is_last = (ind < 1)
|
| 288 |
-
use_attn = (now_res in attn_res)
|
| 289 |
-
channel_mult = inner_channel * channel_mults[ind]
|
| 290 |
-
for _ in range(0, res_blocks + 1):
|
| 291 |
-
ups.append(ResnetBlocWithAttn(pre_channel + feat_channels.pop(), channel_mult,
|
| 292 |
-
noise_level_emb_dim=noise_level_channel, norm_groups=norm_groups,
|
| 293 |
-
dropout=dropout, with_attn=use_attn, size=now_res))
|
| 294 |
-
pre_channel = channel_mult
|
| 295 |
-
if not is_last:
|
| 296 |
-
ups.append(Upsample(pre_channel))
|
| 297 |
-
now_res = now_res * 2
|
| 298 |
-
self.ups = nn.ModuleList(ups)
|
| 299 |
-
|
| 300 |
-
self.final_conv = Block(pre_channel, default(out_channel, in_channel), groups=norm_groups)
|
| 301 |
-
self.condition = CPEN(inchannel=condition_ch)
|
| 302 |
-
self.condition_ch = condition_ch
|
| 303 |
-
|
| 304 |
-
def forward(self, x, time, img_s1=None, class_label=None, return_condition=False, t_ori=0):
|
| 305 |
-
condition = x[:, :self.condition_ch, ...].clone()
|
| 306 |
-
x = x[:, self.condition_ch:, ...]
|
| 307 |
-
|
| 308 |
-
c1, c2, c3, c4, c5 = self.condition(condition)
|
| 309 |
-
c_base = [c1, c2, c3, c4, c5]
|
| 310 |
-
|
| 311 |
-
c = []
|
| 312 |
-
for i in range(len(c_base)):
|
| 313 |
-
for _ in range(self.res_blocks):
|
| 314 |
-
c.append(c_base[i])
|
| 315 |
-
|
| 316 |
-
t = self.noise_level_mlp(time) if exists(self.noise_level_mlp) else None
|
| 317 |
-
|
| 318 |
-
feats = []
|
| 319 |
-
i = 0
|
| 320 |
-
for layer in self.downs:
|
| 321 |
-
if isinstance(layer, ResnetBlocWithAttn):
|
| 322 |
-
x = layer(x, t, c[i])
|
| 323 |
-
i += 1
|
| 324 |
-
else:
|
| 325 |
-
x = layer(x)
|
| 326 |
-
feats.append(x)
|
| 327 |
-
|
| 328 |
-
for layer in self.mid:
|
| 329 |
-
if isinstance(layer, ResnetBlocWithAttn):
|
| 330 |
-
x = layer(x, t, c5)
|
| 331 |
-
else:
|
| 332 |
-
x = layer(x)
|
| 333 |
-
|
| 334 |
-
c_base = [c5, c4, c3, c2, c1]
|
| 335 |
-
c = []
|
| 336 |
-
for i in range(len(c_base)):
|
| 337 |
-
for _ in range(self.res_blocks + 1):
|
| 338 |
-
c.append(c_base[i])
|
| 339 |
-
|
| 340 |
-
i = 0
|
| 341 |
-
for layer in self.ups:
|
| 342 |
-
if isinstance(layer, ResnetBlocWithAttn):
|
| 343 |
-
x = layer(torch.cat((x, feats.pop()), dim=1), t, c[i])
|
| 344 |
-
i += 1
|
| 345 |
-
else:
|
| 346 |
-
x = layer(x)
|
| 347 |
-
|
| 348 |
-
if not return_condition:
|
| 349 |
-
return self.final_conv(x)
|
| 350 |
-
else:
|
| 351 |
-
return self.final_conv(x), [c1, c2, c3, c4, c5]
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
# ============================================================================
|
| 355 |
-
# GaussianDiffusion - Proper DDIM Sampling
|
| 356 |
-
# ============================================================================
|
| 357 |
-
|
| 358 |
-
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2):
|
| 359 |
-
if schedule == 'linear':
|
| 360 |
-
betas = np.linspace(linear_start, linear_end, n_timestep, dtype=np.float64)
|
| 361 |
-
else:
|
| 362 |
-
raise NotImplementedError(schedule)
|
| 363 |
-
return betas
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
class GaussianDiffusion(nn.Module):
|
| 367 |
-
def __init__(self, denoise_fn, image_size, channels=3, schedule_opt=None, opt=None):
|
| 368 |
-
super().__init__()
|
| 369 |
-
self.channels = channels
|
| 370 |
-
self.image_size = image_size
|
| 371 |
-
self.denoise_fn = denoise_fn
|
| 372 |
-
self.opt = opt
|
| 373 |
-
self.ddim = schedule_opt.get('ddim', 1) if schedule_opt else 1
|
| 374 |
-
|
| 375 |
-
def set_new_noise_schedule(self, schedule_opt, device, num_train_timesteps=1000):
|
| 376 |
-
self.ddim = schedule_opt['ddim']
|
| 377 |
-
self.num_train_timesteps = num_train_timesteps
|
| 378 |
-
to_torch = partial(torch.tensor, dtype=torch.float32, device=device)
|
| 379 |
-
|
| 380 |
-
betas = make_beta_schedule(
|
| 381 |
-
schedule=schedule_opt['schedule'],
|
| 382 |
-
n_timestep=num_train_timesteps,
|
| 383 |
-
linear_start=schedule_opt['linear_start'],
|
| 384 |
-
linear_end=schedule_opt['linear_end']
|
| 385 |
-
)
|
| 386 |
-
|
| 387 |
-
alphas = 1. - betas
|
| 388 |
-
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 389 |
-
self.sqrt_alphas_cumprod_prev = np.sqrt(np.append(1., alphas_cumprod))
|
| 390 |
-
|
| 391 |
-
self.num_timesteps = int(betas.shape[0])
|
| 392 |
-
self.register_buffer('betas', to_torch(betas))
|
| 393 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 394 |
-
|
| 395 |
-
self.ddim_num_steps = schedule_opt['n_timestep']
|
| 396 |
-
print(f'DDIM sampling steps: {self.ddim_num_steps}')
|
| 397 |
-
|
| 398 |
-
def ddim_sample(self, condition_x, img_or_shape, device, seed=1):
|
| 399 |
-
"""DDIM sampling - matches the original E3Diff implementation."""
|
| 400 |
-
eta = 0.8 # ddim_sampling_eta for linear schedule
|
| 401 |
-
|
| 402 |
-
batch = img_or_shape[0]
|
| 403 |
-
total_timesteps = self.num_train_timesteps
|
| 404 |
-
sampling_timesteps = self.ddim_num_steps
|
| 405 |
-
|
| 406 |
-
ts = torch.linspace(total_timesteps, 0, sampling_timesteps + 1).to(device).long()
|
| 407 |
-
x = torch.randn(img_or_shape, device=device)
|
| 408 |
-
batch_size = x.shape[0]
|
| 409 |
-
|
| 410 |
-
imgs = [x]
|
| 411 |
-
img_onestep = [condition_x[:, :self.channels, ...]]
|
| 412 |
-
|
| 413 |
-
for i in range(1, sampling_timesteps + 1):
|
| 414 |
-
cur_t = ts[i - 1] - 1
|
| 415 |
-
prev_t = ts[i] - 1
|
| 416 |
-
|
| 417 |
-
noise_level = torch.FloatTensor(
|
| 418 |
-
[self.sqrt_alphas_cumprod_prev[cur_t.item()]]
|
| 419 |
-
).repeat(batch_size, 1).to(device)
|
| 420 |
-
|
| 421 |
-
alpha_prod_t = self.alphas_cumprod[cur_t]
|
| 422 |
-
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else torch.tensor(1.0, device=device)
|
| 423 |
-
beta_prod_t = 1 - alpha_prod_t
|
| 424 |
-
|
| 425 |
-
# Model prediction
|
| 426 |
-
model_output = self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level)
|
| 427 |
-
|
| 428 |
-
# Compute sigma
|
| 429 |
-
sigma_2 = eta * (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
| 430 |
-
noise = torch.randn_like(x)
|
| 431 |
-
|
| 432 |
-
# Predict original sample
|
| 433 |
-
pred_original_sample = (x - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
| 434 |
-
pred_original_sample = pred_original_sample.clamp(-1, 1)
|
| 435 |
-
|
| 436 |
-
pred_sample_direction = (1 - alpha_prod_t_prev - sigma_2) ** 0.5 * model_output
|
| 437 |
-
|
| 438 |
-
x = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction + sigma_2 ** 0.5 * noise
|
| 439 |
-
|
| 440 |
-
imgs.append(x)
|
| 441 |
-
img_onestep.append(pred_original_sample)
|
| 442 |
-
|
| 443 |
-
imgs = torch.cat(imgs, dim=0)
|
| 444 |
-
img_onestep = torch.cat(img_onestep, dim=0)
|
| 445 |
-
|
| 446 |
-
return imgs, img_onestep
|
| 447 |
-
|
| 448 |
-
@torch.no_grad()
|
| 449 |
-
def super_resolution(self, x_in, continous=False, seed=1, img_s1=None):
|
| 450 |
-
"""Main inference method."""
|
| 451 |
-
device = self.betas.device
|
| 452 |
-
x = x_in
|
| 453 |
-
shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])
|
| 454 |
-
|
| 455 |
-
self.ddim_num_steps = self.opt['ddim_steps']
|
| 456 |
-
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed)
|
| 457 |
-
|
| 458 |
-
if continous:
|
| 459 |
-
return ret_img, img_onestep
|
| 460 |
-
else:
|
| 461 |
-
return ret_img[-x_in.shape[0]:], img_onestep
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
# ============================================================================
|
| 465 |
-
# E3Diff Inference Class
|
| 466 |
-
# ============================================================================
|
| 467 |
|
| 468 |
class E3DiffInference:
|
|
|
|
|
|
|
| 469 |
def __init__(self, weights_path=None, device="cuda", num_inference_steps=1):
|
| 470 |
self.device = torch.device(device if torch.cuda.is_available() else "cpu")
|
| 471 |
self.image_size = 256
|
|
@@ -480,6 +39,7 @@ class E3DiffInference:
|
|
| 480 |
print("[E3Diff] Model ready!")
|
| 481 |
|
| 482 |
def _build_model(self):
|
|
|
|
| 483 |
unet = UNet(
|
| 484 |
in_channel=3,
|
| 485 |
out_channel=3,
|
|
@@ -505,19 +65,30 @@ class E3DiffInference:
|
|
| 505 |
opt = {
|
| 506 |
'stage': 2,
|
| 507 |
'ddim_steps': self.num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
}
|
| 509 |
|
| 510 |
model = GaussianDiffusion(
|
| 511 |
denoise_fn=unet,
|
| 512 |
image_size=self.image_size,
|
| 513 |
channels=3,
|
|
|
|
|
|
|
| 514 |
schedule_opt=schedule_opt,
|
|
|
|
|
|
|
| 515 |
opt=opt
|
| 516 |
)
|
| 517 |
|
| 518 |
return model.to(self.device)
|
| 519 |
|
| 520 |
def _load_weights(self, weights_path):
|
|
|
|
| 521 |
if weights_path is None:
|
| 522 |
weights_path = hf_hub_download(
|
| 523 |
repo_id="Dhenenjay/E3Diff-SAR2Optical",
|
|
@@ -530,6 +101,7 @@ class E3DiffInference:
|
|
| 530 |
print("[E3Diff] Weights loaded!")
|
| 531 |
|
| 532 |
def preprocess(self, image):
|
|
|
|
| 533 |
if image.mode != 'RGB':
|
| 534 |
image = image.convert('RGB')
|
| 535 |
if image.size != (self.image_size, self.image_size):
|
|
@@ -541,6 +113,7 @@ class E3DiffInference:
|
|
| 541 |
return img_tensor.unsqueeze(0).to(self.device)
|
| 542 |
|
| 543 |
def postprocess(self, tensor):
|
|
|
|
| 544 |
tensor = tensor.squeeze(0).cpu()
|
| 545 |
tensor = torch.clamp(tensor, -1, 1)
|
| 546 |
tensor = (tensor + 1.0) / 2.0
|
|
@@ -549,12 +122,14 @@ class E3DiffInference:
|
|
| 549 |
|
| 550 |
@torch.no_grad()
|
| 551 |
def translate(self, sar_image, seed=42):
|
|
|
|
| 552 |
if seed is not None:
|
| 553 |
torch.manual_seed(seed)
|
| 554 |
np.random.seed(seed)
|
| 555 |
|
| 556 |
sar_tensor = self.preprocess(sar_image)
|
| 557 |
|
|
|
|
| 558 |
self.model.set_new_noise_schedule(
|
| 559 |
{
|
| 560 |
'schedule': 'linear',
|
|
@@ -568,22 +143,22 @@ class E3DiffInference:
|
|
| 568 |
num_train_timesteps=1000
|
| 569 |
)
|
| 570 |
|
|
|
|
| 571 |
output, _ = self.model.super_resolution(sar_tensor, continous=False, seed=seed, img_s1=sar_tensor)
|
| 572 |
return self.postprocess(output)
|
| 573 |
|
| 574 |
|
| 575 |
-
# ============================================================================
|
| 576 |
-
# High-Resolution Processor
|
| 577 |
-
# ============================================================================
|
| 578 |
-
|
| 579 |
class HighResProcessor:
|
|
|
|
|
|
|
| 580 |
def __init__(self, device="cuda"):
|
| 581 |
self.device = device
|
| 582 |
self.model = None
|
| 583 |
self.tile_size = 256
|
|
|
|
| 584 |
|
| 585 |
def load_model(self, num_steps=1):
|
| 586 |
-
print("Loading E3Diff model...")
|
| 587 |
self.model = E3DiffInference(device=self.device, num_inference_steps=num_steps)
|
| 588 |
self.num_steps = num_steps
|
| 589 |
|
|
@@ -640,7 +215,8 @@ class HighResProcessor:
|
|
| 640 |
weights[y:y+tile_size, x:x+tile_size] += blend_weight
|
| 641 |
|
| 642 |
tile_idx += 1
|
| 643 |
-
|
|
|
|
| 644 |
|
| 645 |
output = output / (weights + 1e-8)
|
| 646 |
output = output[:h, :w]
|
|
@@ -656,12 +232,10 @@ class HighResProcessor:
|
|
| 656 |
return image
|
| 657 |
|
| 658 |
|
| 659 |
-
#
|
| 660 |
-
# Gradio Interface
|
| 661 |
-
# ============================================================================
|
| 662 |
-
|
| 663 |
processor = None
|
| 664 |
|
|
|
|
| 665 |
def load_sar_image(filepath):
|
| 666 |
"""Load SAR image from various formats."""
|
| 667 |
try:
|
|
@@ -686,7 +260,7 @@ def load_sar_image(filepath):
|
|
| 686 |
|
| 687 |
|
| 688 |
def _translate_sar_impl(file, num_steps, overlap, enhance_output):
|
| 689 |
-
"""Main translation function
|
| 690 |
global processor
|
| 691 |
|
| 692 |
if file is None:
|
|
@@ -729,7 +303,7 @@ else:
|
|
| 729 |
translate_sar = _translate_sar_impl
|
| 730 |
|
| 731 |
|
| 732 |
-
# Create interface
|
| 733 |
with gr.Blocks(title="E3Diff: SAR-to-Optical Translation") as demo:
|
| 734 |
gr.Markdown("""
|
| 735 |
# 🛰️ E3Diff: High-Resolution SAR-to-Optical Translation
|
|
@@ -743,14 +317,13 @@ with gr.Blocks(title="E3Diff: SAR-to-Optical Translation") as demo:
|
|
| 743 |
|
| 744 |
with gr.Row():
|
| 745 |
with gr.Column():
|
| 746 |
-
input_file = gr.File(label="SAR Input (TIFF, PNG, JPG
|
| 747 |
|
| 748 |
with gr.Row():
|
| 749 |
num_steps = gr.Slider(1, 8, value=1, step=1, label="Quality Steps (1=fast, 8=best)")
|
| 750 |
overlap = gr.Slider(16, 128, value=64, step=16, label="Tile Overlap")
|
| 751 |
|
| 752 |
enhance = gr.Checkbox(value=True, label="Apply enhancement")
|
| 753 |
-
|
| 754 |
submit_btn = gr.Button("🚀 Translate to Optical", variant="primary")
|
| 755 |
|
| 756 |
with gr.Column():
|
|
@@ -766,7 +339,7 @@ with gr.Blocks(title="E3Diff: SAR-to-Optical Translation") as demo:
|
|
| 766 |
|
| 767 |
gr.Markdown("""
|
| 768 |
---
|
| 769 |
-
**Tips:**
|
| 770 |
""")
|
| 771 |
|
| 772 |
|
|
|
|
| 1 |
+
"""E3Diff: SAR-to-Optical Translation - HuggingFace Space."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import os
|
|
|
|
| 4 |
import torch
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image, ImageEnhance
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import tempfile
|
| 9 |
import time
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
| 12 |
+
# Import model components
|
| 13 |
+
from unet import UNet
|
| 14 |
+
from diffusion import GaussianDiffusion
|
| 15 |
+
|
| 16 |
# ZeroGPU support
|
| 17 |
try:
|
| 18 |
import spaces
|
|
|
|
| 21 |
GPU_AVAILABLE = False
|
| 22 |
spaces = None
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
class E3DiffInference:
|
| 26 |
+
"""E3Diff Inference Pipeline - matches local implementation exactly."""
|
| 27 |
+
|
| 28 |
def __init__(self, weights_path=None, device="cuda", num_inference_steps=1):
|
| 29 |
self.device = torch.device(device if torch.cuda.is_available() else "cpu")
|
| 30 |
self.image_size = 256
|
|
|
|
| 39 |
print("[E3Diff] Model ready!")
|
| 40 |
|
| 41 |
def _build_model(self):
|
| 42 |
+
"""Build model - exact same config as local inference.py"""
|
| 43 |
unet = UNet(
|
| 44 |
in_channel=3,
|
| 45 |
out_channel=3,
|
|
|
|
| 65 |
opt = {
|
| 66 |
'stage': 2,
|
| 67 |
'ddim_steps': self.num_inference_steps,
|
| 68 |
+
'model': {
|
| 69 |
+
'beta_schedule': {
|
| 70 |
+
'train': {'n_timestep': 1000},
|
| 71 |
+
'val': schedule_opt
|
| 72 |
+
}
|
| 73 |
+
}
|
| 74 |
}
|
| 75 |
|
| 76 |
model = GaussianDiffusion(
|
| 77 |
denoise_fn=unet,
|
| 78 |
image_size=self.image_size,
|
| 79 |
channels=3,
|
| 80 |
+
loss_type='l1',
|
| 81 |
+
conditional=True,
|
| 82 |
schedule_opt=schedule_opt,
|
| 83 |
+
xT_noise_r=0,
|
| 84 |
+
seed=1,
|
| 85 |
opt=opt
|
| 86 |
)
|
| 87 |
|
| 88 |
return model.to(self.device)
|
| 89 |
|
| 90 |
def _load_weights(self, weights_path):
|
| 91 |
+
"""Load weights - same as local inference.py"""
|
| 92 |
if weights_path is None:
|
| 93 |
weights_path = hf_hub_download(
|
| 94 |
repo_id="Dhenenjay/E3Diff-SAR2Optical",
|
|
|
|
| 101 |
print("[E3Diff] Weights loaded!")
|
| 102 |
|
| 103 |
def preprocess(self, image):
|
| 104 |
+
"""Preprocess input image."""
|
| 105 |
if image.mode != 'RGB':
|
| 106 |
image = image.convert('RGB')
|
| 107 |
if image.size != (self.image_size, self.image_size):
|
|
|
|
| 113 |
return img_tensor.unsqueeze(0).to(self.device)
|
| 114 |
|
| 115 |
def postprocess(self, tensor):
|
| 116 |
+
"""Postprocess output tensor."""
|
| 117 |
tensor = tensor.squeeze(0).cpu()
|
| 118 |
tensor = torch.clamp(tensor, -1, 1)
|
| 119 |
tensor = (tensor + 1.0) / 2.0
|
|
|
|
| 122 |
|
| 123 |
@torch.no_grad()
|
| 124 |
def translate(self, sar_image, seed=42):
|
| 125 |
+
"""Translate SAR to optical - same as local inference.py"""
|
| 126 |
if seed is not None:
|
| 127 |
torch.manual_seed(seed)
|
| 128 |
np.random.seed(seed)
|
| 129 |
|
| 130 |
sar_tensor = self.preprocess(sar_image)
|
| 131 |
|
| 132 |
+
# Set noise schedule
|
| 133 |
self.model.set_new_noise_schedule(
|
| 134 |
{
|
| 135 |
'schedule': 'linear',
|
|
|
|
| 143 |
num_train_timesteps=1000
|
| 144 |
)
|
| 145 |
|
| 146 |
+
# Run inference
|
| 147 |
output, _ = self.model.super_resolution(sar_tensor, continous=False, seed=seed, img_s1=sar_tensor)
|
| 148 |
return self.postprocess(output)
|
| 149 |
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
class HighResProcessor:
|
| 152 |
+
"""High resolution tiled processing."""
|
| 153 |
+
|
| 154 |
def __init__(self, device="cuda"):
|
| 155 |
self.device = device
|
| 156 |
self.model = None
|
| 157 |
self.tile_size = 256
|
| 158 |
+
self.num_steps = None
|
| 159 |
|
| 160 |
def load_model(self, num_steps=1):
|
| 161 |
+
print(f"Loading E3Diff model with {num_steps} steps...")
|
| 162 |
self.model = E3DiffInference(device=self.device, num_inference_steps=num_steps)
|
| 163 |
self.num_steps = num_steps
|
| 164 |
|
|
|
|
| 215 |
weights[y:y+tile_size, x:x+tile_size] += blend_weight
|
| 216 |
|
| 217 |
tile_idx += 1
|
| 218 |
+
if tile_idx % 4 == 0 or tile_idx == total_tiles:
|
| 219 |
+
print(f" Tile {tile_idx}/{total_tiles}")
|
| 220 |
|
| 221 |
output = output / (weights + 1e-8)
|
| 222 |
output = output[:h, :w]
|
|
|
|
| 232 |
return image
|
| 233 |
|
| 234 |
|
| 235 |
+
# Global processor
|
|
|
|
|
|
|
|
|
|
| 236 |
processor = None
|
| 237 |
|
| 238 |
+
|
| 239 |
def load_sar_image(filepath):
|
| 240 |
"""Load SAR image from various formats."""
|
| 241 |
try:
|
|
|
|
| 260 |
|
| 261 |
|
| 262 |
def _translate_sar_impl(file, num_steps, overlap, enhance_output):
|
| 263 |
+
"""Main translation function."""
|
| 264 |
global processor
|
| 265 |
|
| 266 |
if file is None:
|
|
|
|
| 303 |
translate_sar = _translate_sar_impl
|
| 304 |
|
| 305 |
|
| 306 |
+
# Create Gradio interface
|
| 307 |
with gr.Blocks(title="E3Diff: SAR-to-Optical Translation") as demo:
|
| 308 |
gr.Markdown("""
|
| 309 |
# 🛰️ E3Diff: High-Resolution SAR-to-Optical Translation
|
|
|
|
| 317 |
|
| 318 |
with gr.Row():
|
| 319 |
with gr.Column():
|
| 320 |
+
input_file = gr.File(label="SAR Input (TIFF, PNG, JPG)", file_types=[".tif", ".tiff", ".png", ".jpg", ".jpeg"])
|
| 321 |
|
| 322 |
with gr.Row():
|
| 323 |
num_steps = gr.Slider(1, 8, value=1, step=1, label="Quality Steps (1=fast, 8=best)")
|
| 324 |
overlap = gr.Slider(16, 128, value=64, step=16, label="Tile Overlap")
|
| 325 |
|
| 326 |
enhance = gr.Checkbox(value=True, label="Apply enhancement")
|
|
|
|
| 327 |
submit_btn = gr.Button("🚀 Translate to Optical", variant="primary")
|
| 328 |
|
| 329 |
with gr.Column():
|
|
|
|
| 339 |
|
| 340 |
gr.Markdown("""
|
| 341 |
---
|
| 342 |
+
**Tips:** Use steps=1 for speed, steps=4-8 for quality. Works best with Sentinel-1 style SAR.
|
| 343 |
""")
|
| 344 |
|
| 345 |
|