Upload unet.py with huggingface_hub
Browse files
unet.py
CHANGED
|
@@ -1,12 +1,9 @@
|
|
| 1 |
-
"""E3Diff UNet Architecture - exact copy from original with fixed imports."""
|
| 2 |
-
|
| 3 |
import math
|
| 4 |
import torch
|
| 5 |
from torch import nn
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from inspect import isfunction
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
def exists(x):
|
| 12 |
return x is not None
|
|
@@ -17,7 +14,7 @@ def default(val, d):
|
|
| 17 |
return val
|
| 18 |
return d() if isfunction(d) else d
|
| 19 |
|
| 20 |
-
|
| 21 |
class PositionalEncoding(nn.Module):
|
| 22 |
def __init__(self, dim):
|
| 23 |
super().__init__()
|
|
@@ -77,6 +74,9 @@ class Downsample(nn.Module):
|
|
| 77 |
return self.conv(x)
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
| 80 |
class Block(nn.Module):
|
| 81 |
def __init__(self, dim, dim_out, groups=32, dropout=0, stride=1):
|
| 82 |
super().__init__()
|
|
@@ -96,7 +96,7 @@ class ResnetBlock(nn.Module):
|
|
| 96 |
super().__init__()
|
| 97 |
self.noise_func = FeatureWiseAffine(
|
| 98 |
noise_level_emb_dim, dim_out, use_affine_level)
|
| 99 |
-
self.c_func =
|
| 100 |
|
| 101 |
self.block1 = Block(dim, dim_out, groups=norm_groups)
|
| 102 |
self.block2 = Block(dim_out, dim_out, groups=norm_groups, dropout=dropout)
|
|
@@ -104,17 +104,22 @@ class ResnetBlock(nn.Module):
|
|
| 104 |
dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
| 105 |
|
| 106 |
def forward(self, x, time_emb, c):
|
|
|
|
| 107 |
h = self.block1(x)
|
| 108 |
h = self.noise_func(h, time_emb)
|
| 109 |
h = self.block2(h)
|
|
|
|
| 110 |
h = self.c_func(c) + h
|
| 111 |
return h + self.res_conv(x)
|
| 112 |
|
|
|
|
| 113 |
|
| 114 |
class SelfAttention(nn.Module):
|
| 115 |
def __init__(self, in_channel, n_head=1, norm_groups=32):
|
| 116 |
super().__init__()
|
|
|
|
| 117 |
self.n_head = n_head
|
|
|
|
| 118 |
self.norm = nn.GroupNorm(norm_groups, in_channel)
|
| 119 |
self.qkv = nn.Conv2d(in_channel, in_channel * 3, 1, bias=False)
|
| 120 |
self.out = nn.Conv2d(in_channel, in_channel, 1)
|
|
@@ -126,7 +131,7 @@ class SelfAttention(nn.Module):
|
|
| 126 |
|
| 127 |
norm = self.norm(input)
|
| 128 |
qkv = self.qkv(norm).view(batch, n_head, head_dim * 3, height, width)
|
| 129 |
-
query, key, value = qkv.chunk(3, dim=2)
|
| 130 |
|
| 131 |
attn = torch.einsum(
|
| 132 |
"bnchw, bncyx -> bnhwyx", query, key
|
|
@@ -140,6 +145,10 @@ class SelfAttention(nn.Module):
|
|
| 140 |
|
| 141 |
return out + input
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
class ResnetBlocWithAttn(nn.Module):
|
| 145 |
def __init__(self, dim, dim_out, *, noise_level_emb_dim=None, norm_groups=32, dropout=0, with_attn=False, size=256):
|
|
@@ -151,76 +160,12 @@ class ResnetBlocWithAttn(nn.Module):
|
|
| 151 |
self.attn = SelfAttention(dim_out, norm_groups=norm_groups)
|
| 152 |
|
| 153 |
def forward(self, x, time_emb, c, t=0, save_flag=False, file_i=0):
|
| 154 |
-
x = self.res_block(x, time_emb, c)
|
| 155 |
-
if
|
| 156 |
x = self.attn(x, t=t, save_flag=save_flag, file_num=file_i)
|
| 157 |
return x
|
| 158 |
|
| 159 |
|
| 160 |
-
class ResBlock_normal(nn.Module):
|
| 161 |
-
def __init__(self, dim, dim_out, dropout=0, norm_groups=32):
|
| 162 |
-
super().__init__()
|
| 163 |
-
self.block1 = Block(dim, dim_out, groups=norm_groups)
|
| 164 |
-
self.block2 = Block(dim_out, dim_out, groups=norm_groups, dropout=dropout)
|
| 165 |
-
self.res_conv = nn.Conv2d(
|
| 166 |
-
dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
| 167 |
-
|
| 168 |
-
def forward(self, x):
|
| 169 |
-
b, c, h, w = x.shape
|
| 170 |
-
h = self.block1(x)
|
| 171 |
-
h = self.block2(h)
|
| 172 |
-
return h + self.res_conv(x)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
class CPEN(nn.Module):
|
| 176 |
-
"""Condition Pyramid Encoder Network - EXACT architecture from E3Diff."""
|
| 177 |
-
def __init__(self, inchannel=1):
|
| 178 |
-
super(CPEN, self).__init__()
|
| 179 |
-
self.pool = SoftPool2d(kernel_size=(2, 2), stride=(2, 2))
|
| 180 |
-
|
| 181 |
-
self.E1 = nn.Sequential(
|
| 182 |
-
nn.Conv2d(inchannel, 64, kernel_size=3, padding=1),
|
| 183 |
-
Swish()
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
self.E2 = nn.Sequential(
|
| 187 |
-
ResBlock_normal(64, 128, dropout=0, norm_groups=16),
|
| 188 |
-
ResBlock_normal(128, 128, dropout=0, norm_groups=16),
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
self.E3 = nn.Sequential(
|
| 192 |
-
ResBlock_normal(128, 256, dropout=0, norm_groups=16),
|
| 193 |
-
ResBlock_normal(256, 256, dropout=0, norm_groups=16),
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
self.E4 = nn.Sequential(
|
| 197 |
-
ResBlock_normal(256, 512, dropout=0, norm_groups=16),
|
| 198 |
-
ResBlock_normal(512, 512, dropout=0, norm_groups=16),
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
self.E5 = nn.Sequential(
|
| 202 |
-
ResBlock_normal(512, 512, dropout=0, norm_groups=16),
|
| 203 |
-
ResBlock_normal(512, 1024, dropout=0, norm_groups=16),
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
def forward(self, x):
|
| 207 |
-
x1 = self.E1(x) # 256x256, 64ch
|
| 208 |
-
|
| 209 |
-
x2 = self.pool(x1) # 128x128
|
| 210 |
-
x2 = self.E2(x2) # 128x128, 128ch
|
| 211 |
-
|
| 212 |
-
x3 = self.pool(x2) # 64x64
|
| 213 |
-
x3 = self.E3(x3) # 64x64, 256ch
|
| 214 |
-
|
| 215 |
-
x4 = self.pool(x3) # 32x32
|
| 216 |
-
x4 = self.E4(x4) # 32x32, 512ch
|
| 217 |
-
|
| 218 |
-
x5 = self.pool(x4) # 16x16
|
| 219 |
-
x5 = self.E5(x5) # 16x16, 1024ch
|
| 220 |
-
|
| 221 |
-
return x1, x2, x3, x4, x5
|
| 222 |
-
|
| 223 |
-
|
| 224 |
class UNet(nn.Module):
|
| 225 |
def __init__(
|
| 226 |
self,
|
|
@@ -229,7 +174,7 @@ class UNet(nn.Module):
|
|
| 229 |
inner_channel=32,
|
| 230 |
norm_groups=32,
|
| 231 |
channel_mults=(1, 2, 4, 8, 8),
|
| 232 |
-
attn_res=(8
|
| 233 |
res_blocks=3,
|
| 234 |
dropout=0,
|
| 235 |
with_noise_level_emb=True,
|
|
@@ -251,35 +196,37 @@ class UNet(nn.Module):
|
|
| 251 |
noise_level_channel = None
|
| 252 |
self.noise_level_mlp = None
|
| 253 |
|
|
|
|
|
|
|
|
|
|
| 254 |
self.res_blocks = res_blocks
|
| 255 |
num_mults = len(channel_mults)
|
| 256 |
self.num_mults = num_mults
|
| 257 |
pre_channel = inner_channel
|
| 258 |
feat_channels = [pre_channel]
|
| 259 |
now_res = image_size
|
| 260 |
-
|
| 261 |
-
|
| 262 |
for ind in range(num_mults):
|
| 263 |
is_last = (ind == num_mults - 1)
|
| 264 |
use_attn = (now_res in attn_res)
|
| 265 |
channel_mult = inner_channel * channel_mults[ind]
|
| 266 |
for _ in range(0, res_blocks):
|
| 267 |
downs.append(ResnetBlocWithAttn(
|
| 268 |
-
pre_channel, channel_mult, noise_level_emb_dim=noise_level_channel,
|
| 269 |
-
norm_groups=norm_groups, dropout=dropout, with_attn=use_attn, size=now_res))
|
| 270 |
feat_channels.append(channel_mult)
|
| 271 |
pre_channel = channel_mult
|
| 272 |
if not is_last:
|
| 273 |
downs.append(Downsample(pre_channel))
|
| 274 |
feat_channels.append(pre_channel)
|
| 275 |
-
now_res = now_res
|
| 276 |
self.downs = nn.ModuleList(downs)
|
| 277 |
|
| 278 |
self.mid = nn.ModuleList([
|
| 279 |
-
ResnetBlocWithAttn(pre_channel, pre_channel, noise_level_emb_dim=noise_level_channel,
|
| 280 |
-
|
| 281 |
-
ResnetBlocWithAttn(pre_channel, pre_channel, noise_level_emb_dim=noise_level_channel,
|
| 282 |
-
|
| 283 |
])
|
| 284 |
|
| 285 |
ups = []
|
|
@@ -287,66 +234,164 @@ class UNet(nn.Module):
|
|
| 287 |
is_last = (ind < 1)
|
| 288 |
use_attn = (now_res in attn_res)
|
| 289 |
channel_mult = inner_channel * channel_mults[ind]
|
| 290 |
-
for _ in range(0, res_blocks
|
| 291 |
ups.append(ResnetBlocWithAttn(
|
| 292 |
-
pre_channel
|
| 293 |
-
|
| 294 |
pre_channel = channel_mult
|
| 295 |
if not is_last:
|
| 296 |
ups.append(Upsample(pre_channel))
|
| 297 |
-
now_res = now_res
|
|
|
|
| 298 |
self.ups = nn.ModuleList(ups)
|
| 299 |
|
| 300 |
self.final_conv = Block(pre_channel, default(out_channel, in_channel), groups=norm_groups)
|
|
|
|
| 301 |
|
| 302 |
-
self.condition = CPEN(inchannel=condition_ch)
|
| 303 |
self.condition_ch = condition_ch
|
|
|
|
|
|
|
|
|
|
| 304 |
|
|
|
|
|
|
|
|
|
|
| 305 |
def forward(self, x, time, img_s1=None, class_label=None, return_condition=False, t_ori=0):
|
| 306 |
-
|
|
|
|
| 307 |
x = x[:, self.condition_ch:, ...]
|
| 308 |
|
|
|
|
| 309 |
c1, c2, c3, c4, c5 = self.condition(condition)
|
| 310 |
c_base = [c1, c2, c3, c4, c5]
|
| 311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
c = []
|
| 313 |
for i in range(len(c_base)):
|
| 314 |
for _ in range(self.res_blocks):
|
| 315 |
-
c.append(c_base[i])
|
| 316 |
|
| 317 |
-
t = self.noise_level_mlp(time) if exists(
|
|
|
|
| 318 |
|
|
|
|
|
|
|
| 319 |
feats = []
|
| 320 |
-
i
|
| 321 |
for layer in self.downs:
|
| 322 |
if isinstance(layer, ResnetBlocWithAttn):
|
|
|
|
| 323 |
x = layer(x, t, c[i])
|
| 324 |
-
|
|
|
|
| 325 |
else:
|
| 326 |
x = layer(x)
|
|
|
|
| 327 |
feats.append(x)
|
|
|
|
|
|
|
| 328 |
|
| 329 |
for layer in self.mid:
|
| 330 |
if isinstance(layer, ResnetBlocWithAttn):
|
| 331 |
x = layer(x, t, c5)
|
|
|
|
| 332 |
else:
|
| 333 |
x = layer(x)
|
|
|
|
| 334 |
|
|
|
|
| 335 |
c_base = [c5, c4, c3, c2, c1]
|
| 336 |
c = []
|
| 337 |
for i in range(len(c_base)):
|
| 338 |
-
for _ in range(self.res_blocks
|
| 339 |
-
c.append(c_base[i])
|
| 340 |
-
|
| 341 |
i = 0
|
| 342 |
for layer in self.ups:
|
| 343 |
if isinstance(layer, ResnetBlocWithAttn):
|
|
|
|
| 344 |
x = layer(torch.cat((x, feats.pop()), dim=1), t, c[i])
|
| 345 |
-
|
|
|
|
| 346 |
else:
|
| 347 |
x = layer(x)
|
| 348 |
-
|
| 349 |
if not return_condition:
|
| 350 |
return self.final_conv(x)
|
| 351 |
else:
|
| 352 |
return self.final_conv(x), [c1, c2, c3, c4, c5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import math
|
| 2 |
import torch
|
| 3 |
from torch import nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
from inspect import isfunction
|
| 6 |
+
import numpy as np
|
|
|
|
| 7 |
|
| 8 |
def exists(x):
|
| 9 |
return x is not None
|
|
|
|
| 14 |
return val
|
| 15 |
return d() if isfunction(d) else d
|
| 16 |
|
| 17 |
+
# PositionalEncoding Source: https://github.com/lmnt-com/wavegrad/blob/master/src/wavegrad/model.py
|
| 18 |
class PositionalEncoding(nn.Module):
|
| 19 |
def __init__(self, dim):
|
| 20 |
super().__init__()
|
|
|
|
| 74 |
return self.conv(x)
|
| 75 |
|
| 76 |
|
| 77 |
+
# building block modules
|
| 78 |
+
|
| 79 |
+
|
| 80 |
class Block(nn.Module):
|
| 81 |
def __init__(self, dim, dim_out, groups=32, dropout=0, stride=1):
|
| 82 |
super().__init__()
|
|
|
|
| 96 |
super().__init__()
|
| 97 |
self.noise_func = FeatureWiseAffine(
|
| 98 |
noise_level_emb_dim, dim_out, use_affine_level)
|
| 99 |
+
self.c_func = nn.Conv2d(dim_out, dim_out, 1)
|
| 100 |
|
| 101 |
self.block1 = Block(dim, dim_out, groups=norm_groups)
|
| 102 |
self.block2 = Block(dim_out, dim_out, groups=norm_groups, dropout=dropout)
|
|
|
|
| 104 |
dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
| 105 |
|
| 106 |
def forward(self, x, time_emb, c):
|
| 107 |
+
# b, c, h, w = x.shape
|
| 108 |
h = self.block1(x)
|
| 109 |
h = self.noise_func(h, time_emb)
|
| 110 |
h = self.block2(h)
|
| 111 |
+
|
| 112 |
h = self.c_func(c) + h
|
| 113 |
return h + self.res_conv(x)
|
| 114 |
|
| 115 |
+
|
| 116 |
|
| 117 |
class SelfAttention(nn.Module):
|
| 118 |
def __init__(self, in_channel, n_head=1, norm_groups=32):
|
| 119 |
super().__init__()
|
| 120 |
+
|
| 121 |
self.n_head = n_head
|
| 122 |
+
|
| 123 |
self.norm = nn.GroupNorm(norm_groups, in_channel)
|
| 124 |
self.qkv = nn.Conv2d(in_channel, in_channel * 3, 1, bias=False)
|
| 125 |
self.out = nn.Conv2d(in_channel, in_channel, 1)
|
|
|
|
| 131 |
|
| 132 |
norm = self.norm(input)
|
| 133 |
qkv = self.qkv(norm).view(batch, n_head, head_dim * 3, height, width)
|
| 134 |
+
query, key, value = qkv.chunk(3, dim=2) # bhdyx
|
| 135 |
|
| 136 |
attn = torch.einsum(
|
| 137 |
"bnchw, bncyx -> bnhwyx", query, key
|
|
|
|
| 145 |
|
| 146 |
return out + input
|
| 147 |
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
|
| 153 |
class ResnetBlocWithAttn(nn.Module):
|
| 154 |
def __init__(self, dim, dim_out, *, noise_level_emb_dim=None, norm_groups=32, dropout=0, with_attn=False, size=256):
|
|
|
|
| 160 |
self.attn = SelfAttention(dim_out, norm_groups=norm_groups)
|
| 161 |
|
| 162 |
def forward(self, x, time_emb, c, t=0, save_flag=False, file_i=0):
|
| 163 |
+
x = self.res_block(x, time_emb, c) # resblock(x + self.noise_func(noise_embed)) + con1_1(c)
|
| 164 |
+
if(self.with_attn):
|
| 165 |
x = self.attn(x, t=t, save_flag=save_flag, file_num=file_i)
|
| 166 |
return x
|
| 167 |
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
class UNet(nn.Module):
|
| 170 |
def __init__(
|
| 171 |
self,
|
|
|
|
| 174 |
inner_channel=32,
|
| 175 |
norm_groups=32,
|
| 176 |
channel_mults=(1, 2, 4, 8, 8),
|
| 177 |
+
attn_res=(8),
|
| 178 |
res_blocks=3,
|
| 179 |
dropout=0,
|
| 180 |
with_noise_level_emb=True,
|
|
|
|
| 196 |
noise_level_channel = None
|
| 197 |
self.noise_level_mlp = None
|
| 198 |
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
self.res_blocks = res_blocks
|
| 203 |
num_mults = len(channel_mults)
|
| 204 |
self.num_mults = num_mults
|
| 205 |
pre_channel = inner_channel
|
| 206 |
feat_channels = [pre_channel]
|
| 207 |
now_res = image_size
|
| 208 |
+
downs = [nn.Conv2d(in_channel, inner_channel,
|
| 209 |
+
kernel_size=3, padding=1)]
|
| 210 |
for ind in range(num_mults):
|
| 211 |
is_last = (ind == num_mults - 1)
|
| 212 |
use_attn = (now_res in attn_res)
|
| 213 |
channel_mult = inner_channel * channel_mults[ind]
|
| 214 |
for _ in range(0, res_blocks):
|
| 215 |
downs.append(ResnetBlocWithAttn(
|
| 216 |
+
pre_channel, channel_mult, noise_level_emb_dim=noise_level_channel, norm_groups=norm_groups, dropout=dropout, with_attn=use_attn,size=now_res))
|
|
|
|
| 217 |
feat_channels.append(channel_mult)
|
| 218 |
pre_channel = channel_mult
|
| 219 |
if not is_last:
|
| 220 |
downs.append(Downsample(pre_channel))
|
| 221 |
feat_channels.append(pre_channel)
|
| 222 |
+
now_res = now_res//2
|
| 223 |
self.downs = nn.ModuleList(downs)
|
| 224 |
|
| 225 |
self.mid = nn.ModuleList([
|
| 226 |
+
ResnetBlocWithAttn(pre_channel, pre_channel, noise_level_emb_dim=noise_level_channel, norm_groups=norm_groups,
|
| 227 |
+
dropout=dropout, with_attn=True,size=now_res),
|
| 228 |
+
ResnetBlocWithAttn(pre_channel, pre_channel, noise_level_emb_dim=noise_level_channel, norm_groups=norm_groups,
|
| 229 |
+
dropout=dropout, with_attn=False,size=now_res)
|
| 230 |
])
|
| 231 |
|
| 232 |
ups = []
|
|
|
|
| 234 |
is_last = (ind < 1)
|
| 235 |
use_attn = (now_res in attn_res)
|
| 236 |
channel_mult = inner_channel * channel_mults[ind]
|
| 237 |
+
for _ in range(0, res_blocks+1):
|
| 238 |
ups.append(ResnetBlocWithAttn(
|
| 239 |
+
pre_channel+feat_channels.pop(), channel_mult, noise_level_emb_dim=noise_level_channel, norm_groups=norm_groups,
|
| 240 |
+
dropout=dropout, with_attn=use_attn, size=now_res))
|
| 241 |
pre_channel = channel_mult
|
| 242 |
if not is_last:
|
| 243 |
ups.append(Upsample(pre_channel))
|
| 244 |
+
now_res = now_res*2
|
| 245 |
+
|
| 246 |
self.ups = nn.ModuleList(ups)
|
| 247 |
|
| 248 |
self.final_conv = Block(pre_channel, default(out_channel, in_channel), groups=norm_groups)
|
| 249 |
+
|
| 250 |
|
| 251 |
+
self.condition = CPEN(inchannel = condition_ch) # canny+sar
|
| 252 |
self.condition_ch = condition_ch
|
| 253 |
+
# self.c_func2 = nn.Linear(128, 128) #128 256 512 1024
|
| 254 |
+
self.mi = 0
|
| 255 |
+
|
| 256 |
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
def forward(self, x, time, img_s1=None, class_label=None, return_condition=False, t_ori=0):
|
| 261 |
+
# x torch.cat([x_in['SR'], x_noisy], dim=1)
|
| 262 |
+
condition = x[:, :self.condition_ch, ...].clone()
|
| 263 |
x = x[:, self.condition_ch:, ...]
|
| 264 |
|
| 265 |
+
|
| 266 |
c1, c2, c3, c4, c5 = self.condition(condition)
|
| 267 |
c_base = [c1, c2, c3, c4, c5]
|
| 268 |
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|
| 273 |
c = []
|
| 274 |
for i in range(len(c_base)):
|
| 275 |
for _ in range(self.res_blocks):
|
| 276 |
+
c.append(c_base[i])
|
| 277 |
|
| 278 |
+
t = self.noise_level_mlp(time) if exists(
|
| 279 |
+
self.noise_level_mlp) else None
|
| 280 |
|
| 281 |
+
|
| 282 |
+
|
| 283 |
feats = []
|
| 284 |
+
i=0
|
| 285 |
for layer in self.downs:
|
| 286 |
if isinstance(layer, ResnetBlocWithAttn):
|
| 287 |
+
|
| 288 |
x = layer(x, t, c[i])
|
| 289 |
+
# print(x.shape)
|
| 290 |
+
i+=1
|
| 291 |
else:
|
| 292 |
x = layer(x)
|
| 293 |
+
|
| 294 |
feats.append(x)
|
| 295 |
+
|
| 296 |
+
|
| 297 |
|
| 298 |
for layer in self.mid:
|
| 299 |
if isinstance(layer, ResnetBlocWithAttn):
|
| 300 |
x = layer(x, t, c5)
|
| 301 |
+
# print(x.shape)
|
| 302 |
else:
|
| 303 |
x = layer(x)
|
| 304 |
+
|
| 305 |
|
| 306 |
+
|
| 307 |
c_base = [c5, c4, c3, c2, c1]
|
| 308 |
c = []
|
| 309 |
for i in range(len(c_base)):
|
| 310 |
+
for _ in range(self.res_blocks+1):
|
| 311 |
+
c.append(c_base[i])
|
|
|
|
| 312 |
i = 0
|
| 313 |
for layer in self.ups:
|
| 314 |
if isinstance(layer, ResnetBlocWithAttn):
|
| 315 |
+
# print(x.shape)
|
| 316 |
x = layer(torch.cat((x, feats.pop()), dim=1), t, c[i])
|
| 317 |
+
# print(x.shape)
|
| 318 |
+
i+=1
|
| 319 |
else:
|
| 320 |
x = layer(x)
|
| 321 |
+
|
| 322 |
if not return_condition:
|
| 323 |
return self.final_conv(x)
|
| 324 |
else:
|
| 325 |
return self.final_conv(x), [c1, c2, c3, c4, c5]
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
class ResBlock_normal(nn.Module):
|
| 330 |
+
def __init__(self, dim, dim_out, dropout=0, norm_groups=32):
|
| 331 |
+
super().__init__()
|
| 332 |
+
|
| 333 |
+
self.block1 = Block(dim, dim_out, groups=norm_groups)
|
| 334 |
+
self.block2 = Block(dim_out, dim_out, groups=norm_groups, dropout=dropout)
|
| 335 |
+
self.res_conv = nn.Conv2d(
|
| 336 |
+
dim, dim_out, 1) if dim != dim_out else nn.Identity()
|
| 337 |
+
|
| 338 |
+
def forward(self, x):
|
| 339 |
+
b, c, h, w = x.shape
|
| 340 |
+
h = self.block1(x)
|
| 341 |
+
h = self.block2(h)
|
| 342 |
+
return h + self.res_conv(x)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
from SoftPool import soft_pool2d, SoftPool2d
|
| 346 |
+
class CPEN(nn.Module):
|
| 347 |
+
def __init__(self, inchannel = 1):
|
| 348 |
+
super(CPEN, self).__init__()
|
| 349 |
+
self.pool = SoftPool2d(kernel_size=(2,2), stride=(2,2))
|
| 350 |
+
# self.scale=scale
|
| 351 |
+
# if scale == 2:
|
| 352 |
+
|
| 353 |
+
self.E1= nn.Sequential(nn.Conv2d(inchannel, 64, kernel_size=3, padding=1),
|
| 354 |
+
Swish())
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
self.E2=nn.Sequential(
|
| 359 |
+
ResBlock_normal(64, 128, dropout=0, norm_groups=16),
|
| 360 |
+
ResBlock_normal(128, 128, dropout=0, norm_groups=16),
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
self.E3=nn.Sequential(
|
| 364 |
+
ResBlock_normal(128, 256, dropout=0, norm_groups=16),
|
| 365 |
+
ResBlock_normal(256, 256, dropout=0, norm_groups=16),
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
self.E4=nn.Sequential(
|
| 369 |
+
ResBlock_normal(256, 512, dropout=0, norm_groups=16),
|
| 370 |
+
ResBlock_normal(512, 512, dropout=0, norm_groups=16),
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
self.E5=nn.Sequential(
|
| 374 |
+
ResBlock_normal(512, 512, dropout=0, norm_groups=16),
|
| 375 |
+
ResBlock_normal(512, 1024, dropout=0, norm_groups=16),
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def forward(self, x):
|
| 381 |
+
|
| 382 |
+
x1 = self.E1(x)
|
| 383 |
+
|
| 384 |
+
x2 = self.pool(x1)
|
| 385 |
+
x2 = self.E2(x2)
|
| 386 |
+
|
| 387 |
+
x3 = self.pool(x2)
|
| 388 |
+
x3 = self.E3(x3)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
x4 = self.pool(x3)
|
| 392 |
+
x4 = self.E4(x4)
|
| 393 |
+
|
| 394 |
+
x5 = self.pool(x4)
|
| 395 |
+
x5 = self.E5(x5)
|
| 396 |
+
|
| 397 |
+
return x1, x2, x3, x4, x5
|