IMS-ToucanTTS / run_GUI_demo_shan.py
NorHsangPha's picture
Initial commit
de6e35f verified
raw
history blame
8.22 kB
import os
import gradio as gr
import torch
import torch.cuda
from Utility.utils import float2pcm
from Architectures.ControllabilityGAN.GAN import GanWrapper
from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface
from Utility.storage_config import MODELS_DIR
from Utility.utils import load_json_from_path
demo = gr.Blocks()
class ControllableInterface:
def __init__(self, gpu_id="cpu", available_artificial_voices=1000):
if gpu_id == "cpu":
os.environ["CUDA_VISIBLE_DEVICES"] = ""
else:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id}"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = ToucanTTSInterface(device=self.device, tts_model_path="Shan")
self.wgan = GanWrapper(
os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"),
device=self.device,
)
self.generated_speaker_embeds = list()
self.available_artificial_voices = available_artificial_voices
self.current_language = ""
self.current_accent = ""
def read(
self,
prompt,
language,
accent,
voice_seed,
duration_scaling_factor,
pause_duration_scaling_factor,
pitch_variance_scale,
energy_variance_scale,
emb_slider_1,
emb_slider_2,
emb_slider_3,
emb_slider_4,
emb_slider_5,
emb_slider_6,
):
if self.current_language != language:
self.model.set_phonemizer_language(language)
self.current_language = language
if self.current_accent != accent:
self.model.set_accent_language(accent)
self.current_accent = accent
self.wgan.set_latent(voice_seed)
controllability_vector = torch.tensor(
[
emb_slider_1,
emb_slider_2,
emb_slider_3,
emb_slider_4,
emb_slider_5,
emb_slider_6,
],
dtype=torch.float32,
)
embedding = self.wgan.modify_embed(controllability_vector)
self.model.set_utterance_embedding(embedding=embedding)
phones = self.model.text2phone.get_phone_string(prompt)
if len(phones) > 1800:
prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
if self.current_language != "eng":
self.model.set_phonemizer_language("eng")
self.current_language = "eng"
if self.current_accent != "eng":
self.model.set_accent_language("eng")
self.current_accent = "eng"
print(prompt)
wav, sr, fig = self.model(
prompt,
input_is_phones=False,
duration_scaling_factor=duration_scaling_factor,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
pause_duration_scaling_factor=pause_duration_scaling_factor,
return_plot_as_filepath=True,
)
return sr, wav, fig
class TTSWebUI:
def __init__(
self,
gpu_id="cpu",
title="Controllable Text-to-Speech for over 7000 Languages",
article="",
available_artificial_voices=1000,
path_to_iso_list="Preprocessing/multilinguality/iso_to_fullname.json",
):
iso_to_name = load_json_from_path(path_to_iso_list)
text_selection = [
f"{iso_to_name[iso_code]} Text ({iso_code})" for iso_code in iso_to_name
]
# accent_selection = [f"{iso_to_name[iso_code]} Accent ({iso_code})" for iso_code in iso_to_name]
self.controllable_ui = ControllableInterface(
gpu_id=gpu_id, available_artificial_voices=available_artificial_voices
)
self.iface = gr.Interface(
fn=self.read,
inputs=[
gr.Textbox(
lines=2,
placeholder="write what you want the synthesis to read here...",
value="မႂ်ႇသုင်ၶႃႈ ယူႇလီၵိၼ်ဝၢၼ် ၵတ်းယဵၼ်ၸႂ် မိူၼ်ၾႃႉၾူၼ်လူမ်းလီယူႇၶႃႈ ၼေႃႈ",
label="Text input",
),
gr.Dropdown(
text_selection,
type="value",
value="Shan Text (shn)",
label="Select the Language of the Text (type on your keyboard to find it quickly)",
),
gr.Slider(
minimum=0,
maximum=available_artificial_voices,
step=1,
value=1000,
label="Random Seed for the artificial Voice",
),
gr.Slider(
minimum=0.7,
maximum=1.3,
step=0.1,
value=1.2,
label="Duration Scale",
),
gr.Slider(
minimum=0.5,
maximum=1.5,
step=0.1,
value=1.0,
label="Pitch Variance Scale",
),
gr.Slider(
minimum=0.5,
maximum=1.5,
step=0.1,
value=1.0,
label="Energy Variance Scale",
),
gr.Slider(
minimum=-10.0,
maximum=10.0,
step=0.1,
value=10.0,
label="Femininity / Masculinity",
),
gr.Slider(
minimum=-10.0,
maximum=10.0,
step=0.1,
value=-10.0,
label="Voice Depth",
),
],
outputs=[
gr.Audio(type="numpy", label="Speech"),
gr.Image(label="Visualization"),
],
title=title,
theme="default",
allow_flagging="never",
article=article,
)
def read(
self,
prompt,
language,
voice_seed,
duration_scaling_factor,
pitch_variance_scale,
energy_variance_scale,
emb1,
emb2,
):
sr, wav, fig = self.controllable_ui.read(
prompt=prompt,
language=language.split(" ")[-1].split("(")[1].split(")")[0],
accent=language.split(" ")[-1].split("(")[1].split(")")[0],
voice_seed=voice_seed,
duration_scaling_factor=duration_scaling_factor,
pause_duration_scaling_factor=1.0,
pitch_variance_scale=pitch_variance_scale,
energy_variance_scale=energy_variance_scale,
emb_slider_1=emb1,
emb_slider_2=emb2,
emb_slider_3=0.0,
emb_slider_4=0.0,
emb_slider_5=0.0,
emb_slider_6=0.0,
)
return (sr, float2pcm(wav)), fig
def render(self):
return self.iface
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown(
"<p align='center' style='font-size: 20px;'><a href='https://github.com/DigitalPhonetics/IMS-Toucan'>IMS-Toucan</a>: Multilingual and Controllable Text-to-Speech Toolkit of the Speech and Language Technologies Group at the University of Stuttgart.</p>"
)
gr.HTML(
"<p align='center' style='font-size: 18px;'><a href='https://github.com/NoerNova/IMS-Toucan-Shan'>IMS-Toucan-Shan</a>: Contain the Shan finetune script</p>"
)
TTSWebUI(gpu_id="cuda" if torch.cuda.is_available() else "cpu").render()
demo.launch()