Spaces:
Running
Running
import json | |
import os | |
import torch | |
import yaml | |
def traverse_dir( | |
root_dir, | |
extensions, | |
amount=None, | |
str_include=None, | |
str_exclude=None, | |
is_pure=False, | |
is_sort=False, | |
is_ext=True): | |
file_list = [] | |
cnt = 0 | |
for root, _, files in os.walk(root_dir): | |
for file in files: | |
if any([file.endswith(f".{ext}") for ext in extensions]): | |
# path | |
mix_path = os.path.join(root, file) | |
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path | |
# amount | |
if (amount is not None) and (cnt == amount): | |
if is_sort: | |
file_list.sort() | |
return file_list | |
# check string | |
if (str_include is not None) and (str_include not in pure_path): | |
continue | |
if (str_exclude is not None) and (str_exclude in pure_path): | |
continue | |
if not is_ext: | |
ext = pure_path.split('.')[-1] | |
pure_path = pure_path[:-(len(ext)+1)] | |
file_list.append(pure_path) | |
cnt += 1 | |
if is_sort: | |
file_list.sort() | |
return file_list | |
class DotDict(dict): | |
def __getattr__(*args): | |
val = dict.get(*args) | |
return DotDict(val) if type(val) is dict else val | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
def get_network_paras_amount(model_dict): | |
info = dict() | |
for model_name, model in model_dict.items(): | |
# all_params = sum(p.numel() for p in model.parameters()) | |
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
info[model_name] = trainable_params | |
return info | |
def load_config(path_config): | |
with open(path_config, "r") as config: | |
args = yaml.safe_load(config) | |
args = DotDict(args) | |
# print(args) | |
return args | |
def save_config(path_config,config): | |
config = dict(config) | |
with open(path_config, "w") as f: | |
yaml.dump(config, f) | |
def to_json(path_params, path_json): | |
params = torch.load(path_params, map_location=torch.device('cpu')) | |
raw_state_dict = {} | |
for k, v in params.items(): | |
val = v.flatten().numpy().tolist() | |
raw_state_dict[k] = val | |
with open(path_json, 'w') as outfile: | |
json.dump(raw_state_dict, outfile,indent= "\t") | |
def convert_tensor_to_numpy(tensor, is_squeeze=True): | |
if is_squeeze: | |
tensor = tensor.squeeze() | |
if tensor.requires_grad: | |
tensor = tensor.detach() | |
if tensor.is_cuda: | |
tensor = tensor.cpu() | |
return tensor.numpy() | |
def load_model( | |
expdir, | |
model, | |
optimizer, | |
name='model', | |
postfix='', | |
device='cpu'): | |
if postfix == '': | |
postfix = '_' + postfix | |
path = os.path.join(expdir, name+postfix) | |
path_pt = traverse_dir(expdir, ['pt'], is_ext=False) | |
global_step = 0 | |
if len(path_pt) > 0: | |
steps = [s[len(path):] for s in path_pt] | |
maxstep = max([int(s) if s.isdigit() else 0 for s in steps]) | |
if maxstep >= 0: | |
path_pt = path+str(maxstep)+'.pt' | |
else: | |
path_pt = path+'best.pt' | |
print(' [*] restoring model from', path_pt) | |
ckpt = torch.load(path_pt, map_location=torch.device(device)) | |
global_step = ckpt['global_step'] | |
model.load_state_dict(ckpt['model'], strict=False) | |
if ckpt.get("optimizer") is not None: | |
optimizer.load_state_dict(ckpt['optimizer']) | |
return global_step, model, optimizer | |