Spaces:
Running
Running
import os | |
# os.system("pip install ./ort_nightly_gpu-1.17.0.dev20240118002-cp310-cp310-manylinux_2_28_x86_64.whl") | |
os.system("pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/") | |
import gc | |
import hashlib | |
import queue | |
import threading | |
import json | |
import shlex | |
import sys | |
import subprocess | |
import librosa | |
import numpy as np | |
import soundfile as sf | |
import torch | |
from tqdm import tqdm | |
from utils import ( | |
remove_directory_contents, | |
create_directories, | |
download_manager, | |
) | |
import random | |
import spaces | |
from utils import logger | |
import onnxruntime as ort | |
import warnings | |
import spaces | |
import gradio as gr | |
import logging | |
import time | |
import traceback | |
from pedalboard import Pedalboard, Reverb, Delay, Chorus, Compressor, Gain, HighpassFilter, LowpassFilter | |
from pedalboard.io import AudioFile | |
import numpy as np | |
warnings.filterwarnings("ignore") | |
title = "<center><strong><font size='7'>Audio🔹separator</font></strong></center>" | |
description = "This demo uses the MDX-Net models for vocal and background sound separation." | |
theme = "NoCrypt/miku" | |
stem_naming = { | |
"Vocals": "Instrumental", | |
"Other": "Instruments", | |
"Instrumental": "Vocals", | |
"Drums": "Drumless", | |
"Bass": "Bassless", | |
} | |
class MDXModel: | |
def __init__( | |
self, | |
device, | |
dim_f, | |
dim_t, | |
n_fft, | |
hop=1024, | |
stem_name=None, | |
compensation=1.000, | |
): | |
self.dim_f = dim_f | |
self.dim_t = dim_t | |
self.dim_c = 4 | |
self.n_fft = n_fft | |
self.hop = hop | |
self.stem_name = stem_name | |
self.compensation = compensation | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window( | |
window_length=self.n_fft, periodic=True | |
).to(device) | |
out_c = self.dim_c | |
self.freq_pad = torch.zeros( | |
[1, out_c, self.n_bins - self.dim_f, self.dim_t] | |
).to(device) | |
def stft(self, x): | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop, | |
window=self.window, | |
center=True, | |
return_complex=True, | |
) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, 4, self.n_bins, self.dim_t] | |
) | |
return x[:, :, : self.dim_f] | |
def istft(self, x, freq_pad=None): | |
freq_pad = ( | |
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) | |
if freq_pad is None | |
else freq_pad | |
) | |
x = torch.cat([x, freq_pad], -2) | |
# c = 4*2 if self.target_name=='*' else 2 | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, 2, self.n_bins, self.dim_t] | |
) | |
x = x.permute([0, 2, 3, 1]) | |
x = x.contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop, | |
window=self.window, | |
center=True, | |
) | |
return x.reshape([-1, 2, self.chunk_size]) | |
class MDX: | |
DEFAULT_SR = 44100 | |
# Unit: seconds | |
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR | |
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR | |
def __init__( | |
self, model_path: str, params: MDXModel, processor=0 | |
): | |
# Set the device and the provider (CPU or CUDA) | |
self.device = ( | |
torch.device(f"cuda:{processor}") | |
if processor >= 0 | |
else torch.device("cpu") | |
) | |
self.provider = ( | |
["CUDAExecutionProvider"] | |
if processor >= 0 | |
else ["CPUExecutionProvider"] | |
) | |
self.model = params | |
# Load the ONNX model using ONNX Runtime | |
self.ort = ort.InferenceSession(model_path, providers=self.provider) | |
# Preload the model for faster performance | |
self.ort.run( | |
None, | |
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()}, | |
) | |
self.process = lambda spec: self.ort.run( | |
None, {"input": spec.cpu().numpy()} | |
)[0] | |
self.prog = None | |
def get_hash(model_path): | |
try: | |
with open(model_path, "rb") as f: | |
f.seek(-10000 * 1024, 2) | |
model_hash = hashlib.md5(f.read()).hexdigest() | |
except: # noqa | |
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
return model_hash | |
def segment( | |
wave, | |
combine=True, | |
chunk_size=DEFAULT_CHUNK_SIZE, | |
margin_size=DEFAULT_MARGIN_SIZE, | |
): | |
""" | |
Segment or join segmented wave array | |
Args: | |
wave: (np.array) Wave array to be segmented or joined | |
combine: (bool) If True, combines segmented wave array. | |
If False, segments wave array. | |
chunk_size: (int) Size of each segment (in samples) | |
margin_size: (int) Size of margin between segments (in samples) | |
Returns: | |
numpy array: Segmented or joined wave array | |
""" | |
if combine: | |
# Initializing as None instead of [] for later numpy array concatenation | |
processed_wave = None | |
for segment_count, segment in enumerate(wave): | |
start = 0 if segment_count == 0 else margin_size | |
end = None if segment_count == len(wave) - 1 else -margin_size | |
if margin_size == 0: | |
end = None | |
if processed_wave is None: # Create array for first segment | |
processed_wave = segment[:, start:end] | |
else: # Concatenate to existing array for subsequent segments | |
processed_wave = np.concatenate( | |
(processed_wave, segment[:, start:end]), axis=-1 | |
) | |
else: | |
processed_wave = [] | |
sample_count = wave.shape[-1] | |
if chunk_size <= 0 or chunk_size > sample_count: | |
chunk_size = sample_count | |
if margin_size > chunk_size: | |
margin_size = chunk_size | |
for segment_count, skip in enumerate( | |
range(0, sample_count, chunk_size) | |
): | |
margin = 0 if segment_count == 0 else margin_size | |
end = min(skip + chunk_size + margin_size, sample_count) | |
start = skip - margin | |
cut = wave[:, start:end].copy() | |
processed_wave.append(cut) | |
if end == sample_count: | |
break | |
return processed_wave | |
def pad_wave(self, wave): | |
""" | |
Pad the wave array to match the required chunk size | |
Args: | |
wave: (np.array) Wave array to be padded | |
Returns: | |
tuple: (padded_wave, pad, trim) | |
- padded_wave: Padded wave array | |
- pad: Number of samples that were padded | |
- trim: Number of samples that were trimmed | |
""" | |
n_sample = wave.shape[1] | |
trim = self.model.n_fft // 2 | |
gen_size = self.model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
# Padded wave | |
wave_p = np.concatenate( | |
( | |
np.zeros((2, trim)), | |
wave, | |
np.zeros((2, pad)), | |
np.zeros((2, trim)), | |
), | |
1, | |
) | |
mix_waves = [] | |
for i in range(0, n_sample + pad, gen_size): | |
waves = np.array(wave_p[:, i:i + self.model.chunk_size]) | |
mix_waves.append(waves) | |
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to( | |
self.device | |
) | |
return mix_waves, pad, trim | |
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int): | |
""" | |
Process each wave segment in a multi-threaded environment | |
Args: | |
mix_waves: (torch.Tensor) Wave segments to be processed | |
trim: (int) Number of samples trimmed during padding | |
pad: (int) Number of samples padded during padding | |
q: (queue.Queue) Queue to hold the processed wave segments | |
_id: (int) Identifier of the processed wave segment | |
Returns: | |
numpy array: Processed wave segment | |
""" | |
mix_waves = mix_waves.split(1) | |
with torch.no_grad(): | |
pw = [] | |
for mix_wave in mix_waves: | |
self.prog.update() | |
spec = self.model.stft(mix_wave) | |
processed_spec = torch.tensor(self.process(spec)) | |
processed_wav = self.model.istft( | |
processed_spec.to(self.device) | |
) | |
processed_wav = ( | |
processed_wav[:, :, trim:-trim] | |
.transpose(0, 1) | |
.reshape(2, -1) | |
.cpu() | |
.numpy() | |
) | |
pw.append(processed_wav) | |
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad] | |
q.put({_id: processed_signal}) | |
return processed_signal | |
def process_wave(self, wave: np.array, mt_threads=1): | |
""" | |
Process the wave array in a multi-threaded environment | |
Args: | |
wave: (np.array) Wave array to be processed | |
mt_threads: (int) Number of threads to be used for processing | |
Returns: | |
numpy array: Processed wave array | |
""" | |
self.prog = tqdm(total=0) | |
chunk = wave.shape[-1] // mt_threads | |
waves = self.segment(wave, False, chunk) | |
# Create a queue to hold the processed wave segments | |
q = queue.Queue() | |
threads = [] | |
for c, batch in enumerate(waves): | |
mix_waves, pad, trim = self.pad_wave(batch) | |
self.prog.total = len(mix_waves) * mt_threads | |
thread = threading.Thread( | |
target=self._process_wave, args=(mix_waves, trim, pad, q, c) | |
) | |
thread.start() | |
threads.append(thread) | |
for thread in threads: | |
thread.join() | |
self.prog.close() | |
processed_batches = [] | |
while not q.empty(): | |
processed_batches.append(q.get()) | |
processed_batches = [ | |
list(wave.values())[0] | |
for wave in sorted( | |
processed_batches, key=lambda d: list(d.keys())[0] | |
) | |
] | |
assert len(processed_batches) == len( | |
waves | |
), "Incomplete processed batches, please reduce batch size!" | |
return self.segment(processed_batches, True, chunk) | |
def run_mdx( | |
model_params, | |
output_dir, | |
model_path, | |
filename, | |
exclude_main=False, | |
exclude_inversion=False, | |
suffix=None, | |
invert_suffix=None, | |
denoise=False, | |
keep_orig=True, | |
m_threads=2, | |
device_base="cuda", | |
): | |
if device_base == "cuda": | |
device = torch.device("cuda:0") | |
processor_num = 0 | |
device_properties = torch.cuda.get_device_properties(device) | |
vram_gb = device_properties.total_memory / 1024**3 | |
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2) | |
logger.info(f"threads: {m_threads} vram: {vram_gb}") | |
else: | |
device = torch.device("cpu") | |
processor_num = -1 | |
m_threads = 1 | |
model_hash = MDX.get_hash(model_path) | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"], | |
) | |
mdx_sess = MDX(model_path, model, processor=processor_num) | |
wave, sr = librosa.load(filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + ( | |
mdx_sess.process_wave(wave, m_threads) | |
) | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name if suffix is None else suffix | |
main_filepath = None | |
if not exclude_main: | |
main_filepath = os.path.join( | |
output_dir, | |
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav", | |
) | |
sf.write(main_filepath, wave_processed.T, sr) | |
invert_filepath = None | |
if not exclude_inversion: | |
diff_stem_name = ( | |
stem_naming.get(stem_name) | |
if invert_suffix is None | |
else invert_suffix | |
) | |
stem_name = ( | |
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name | |
) | |
invert_filepath = os.path.join( | |
output_dir, | |
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav", | |
) | |
sf.write( | |
invert_filepath, | |
(-wave_processed.T * model.compensation) + wave.T, | |
sr, | |
) | |
if not keep_orig: | |
os.remove(filename) | |
del mdx_sess, wave_processed, wave | |
gc.collect() | |
torch.cuda.empty_cache() | |
return main_filepath, invert_filepath | |
def run_mdx_beta( | |
model_params, | |
output_dir, | |
model_path, | |
filename, | |
exclude_main=False, | |
exclude_inversion=False, | |
suffix=None, | |
invert_suffix=None, | |
denoise=False, | |
keep_orig=True, | |
m_threads=2, | |
device_base="", | |
): | |
m_threads = 1 | |
duration = librosa.get_duration(filename=filename) | |
if duration >= 60 and duration <= 120: | |
m_threads = 8 | |
elif duration > 120: | |
m_threads = 16 | |
logger.info(f"threads: {m_threads}") | |
model_hash = MDX.get_hash(model_path) | |
device = torch.device("cpu") | |
processor_num = -1 | |
mp = model_params.get(model_hash) | |
model = MDXModel( | |
device, | |
dim_f=mp["mdx_dim_f_set"], | |
dim_t=2 ** mp["mdx_dim_t_set"], | |
n_fft=mp["mdx_n_fft_scale_set"], | |
stem_name=mp["primary_stem"], | |
compensation=mp["compensate"], | |
) | |
mdx_sess = MDX(model_path, model, processor=processor_num) | |
wave, sr = librosa.load(filename, mono=False, sr=44100) | |
# normalizing input wave gives better output | |
peak = max(np.max(wave), abs(np.min(wave))) | |
wave /= peak | |
if denoise: | |
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + ( | |
mdx_sess.process_wave(wave, m_threads) | |
) | |
wave_processed *= 0.5 | |
else: | |
wave_processed = mdx_sess.process_wave(wave, m_threads) | |
# return to previous peak | |
wave_processed *= peak | |
stem_name = model.stem_name if suffix is None else suffix | |
main_filepath = None | |
if not exclude_main: | |
main_filepath = os.path.join( | |
output_dir, | |
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav", | |
) | |
sf.write(main_filepath, wave_processed.T, sr) | |
invert_filepath = None | |
if not exclude_inversion: | |
diff_stem_name = ( | |
stem_naming.get(stem_name) | |
if invert_suffix is None | |
else invert_suffix | |
) | |
stem_name = ( | |
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name | |
) | |
invert_filepath = os.path.join( | |
output_dir, | |
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav", | |
) | |
sf.write( | |
invert_filepath, | |
(-wave_processed.T * model.compensation) + wave.T, | |
sr, | |
) | |
if not keep_orig: | |
os.remove(filename) | |
del mdx_sess, wave_processed, wave | |
gc.collect() | |
torch.cuda.empty_cache() | |
return main_filepath, invert_filepath | |
MDX_DOWNLOAD_LINK = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/" | |
UVR_MODELS = [ | |
"UVR-MDX-NET-Voc_FT.onnx", | |
"UVR_MDXNET_KARA_2.onnx", | |
"Reverb_HQ_By_FoxJoy.onnx", | |
"UVR-MDX-NET-Inst_HQ_4.onnx", | |
] | |
BASE_DIR = "." # os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models") | |
output_dir = os.path.join(BASE_DIR, "clean_song_output") | |
def convert_to_stereo_and_wav(audio_path): | |
wave, sr = librosa.load(audio_path, mono=False, sr=44100) | |
# check if mono | |
if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav": # noqa | |
stereo_path = f"{os.path.splitext(audio_path)[0]}_stereo.wav" | |
stereo_path = os.path.join(output_dir, stereo_path) | |
command = shlex.split( | |
f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"' | |
) | |
sub_params = { | |
"stdout": subprocess.PIPE, | |
"stderr": subprocess.PIPE, | |
"creationflags": subprocess.CREATE_NO_WINDOW | |
if sys.platform == "win32" | |
else 0, | |
} | |
process_wav = subprocess.Popen(command, **sub_params) | |
output, errors = process_wav.communicate() | |
if process_wav.returncode != 0 or not os.path.exists(stereo_path): | |
raise Exception("Error processing audio to stereo wav") | |
return stereo_path | |
else: | |
return audio_path | |
def get_hash(filepath): | |
with open(filepath, 'rb') as f: | |
file_hash = hashlib.blake2b() | |
while chunk := f.read(8192): | |
file_hash.update(chunk) | |
return file_hash.hexdigest()[:18] | |
def random_sleep(): | |
sleep_time = round(random.uniform(5.2, 7.9), 1) | |
time.sleep(sleep_time) | |
def process_uvr_task( | |
orig_song_path: str = "aud_test.mp3", | |
main_vocals: bool = False, | |
dereverb: bool = True, | |
song_id: str = "mdx", # folder output name | |
only_voiceless: bool = False, | |
remove_files_output_dir: bool = False, | |
): | |
device_base = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"Device: {device_base}") | |
if remove_files_output_dir: | |
remove_directory_contents(output_dir) | |
with open(os.path.join(mdxnet_models_dir, "data.json")) as infile: | |
mdx_model_params = json.load(infile) | |
song_output_dir = os.path.join(output_dir, song_id) | |
create_directories(song_output_dir) | |
orig_song_path = convert_to_stereo_and_wav(orig_song_path) | |
logger.info(f"onnxruntime device >> {ort.get_device()}") | |
if only_voiceless: | |
logger.info("Voiceless Track Separation...") | |
process = run_mdx( | |
mdx_model_params, | |
song_output_dir, | |
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Inst_HQ_4.onnx"), | |
orig_song_path, | |
suffix="Voiceless", | |
denoise=False, | |
keep_orig=True, | |
exclude_inversion=True, | |
device_base=device_base, | |
) | |
return process | |
logger.info("Vocal Track Isolation...") | |
vocals_path, instrumentals_path = run_mdx( | |
mdx_model_params, | |
song_output_dir, | |
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Voc_FT.onnx"), | |
orig_song_path, | |
denoise=True, | |
keep_orig=True, | |
device_base=device_base, | |
) | |
if main_vocals: | |
random_sleep() | |
msg_main = "Main Voice Separation from Supporting Vocals..." | |
logger.info(msg_main) | |
gr.Info(msg_main) | |
try: | |
backup_vocals_path, main_vocals_path = run_mdx( | |
mdx_model_params, | |
song_output_dir, | |
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"), | |
vocals_path, | |
suffix="Backup", | |
invert_suffix="Main", | |
denoise=True, | |
device_base=device_base, | |
) | |
except Exception as e: | |
backup_vocals_path, main_vocals_path = run_mdx_beta( | |
mdx_model_params, | |
song_output_dir, | |
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"), | |
vocals_path, | |
suffix="Backup", | |
invert_suffix="Main", | |
denoise=True, | |
device_base=device_base, | |
) | |
else: | |
backup_vocals_path, main_vocals_path = None, vocals_path | |
if dereverb: | |
random_sleep() | |
msg_dereverb = "Vocal Clarity Enhancement through De-Reverberation..." | |
logger.info(msg_dereverb) | |
gr.Info(msg_dereverb) | |
try: | |
_, vocals_dereverb_path = run_mdx( | |
mdx_model_params, | |
song_output_dir, | |
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"), | |
main_vocals_path, | |
invert_suffix="DeReverb", | |
exclude_main=True, | |
denoise=True, | |
device_base=device_base, | |
) | |
except Exception as e: | |
_, vocals_dereverb_path = run_mdx_beta( | |
mdx_model_params, | |
song_output_dir, | |
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"), | |
main_vocals_path, | |
invert_suffix="DeReverb", | |
exclude_main=True, | |
denoise=True, | |
device_base=device_base, | |
) | |
else: | |
vocals_dereverb_path = main_vocals_path | |
return ( | |
vocals_path, | |
instrumentals_path, | |
backup_vocals_path, | |
main_vocals_path, | |
vocals_dereverb_path, | |
) | |
def add_vocal_effects(input_file, output_file, reverb_room_size=0.6, vocal_reverb_dryness=0.8, reverb_damping=0.6, reverb_wet_level=0.35, | |
delay_seconds=0.4, delay_mix=0.25, | |
compressor_threshold_db=-25, compressor_ratio=3.5, compressor_attack_ms=10, compressor_release_ms=60, | |
gain_db=3): | |
effects = [HighpassFilter()] | |
effects.append(Reverb(room_size=reverb_room_size, damping=reverb_damping, wet_level=reverb_wet_level, dry_level=vocal_reverb_dryness)) | |
effects.append(Compressor(threshold_db=compressor_threshold_db, ratio=compressor_ratio, | |
attack_ms=compressor_attack_ms, release_ms=compressor_release_ms)) | |
if delay_seconds > 0 or delay_mix > 0: | |
effects.append(Delay(delay_seconds=delay_seconds, mix=delay_mix)) | |
print("delay applied") | |
# effects.append(Chorus()) | |
if gain_db: | |
effects.append(Gain(gain_db=gain_db)) | |
print("added gain db") | |
board = Pedalboard(effects) | |
with AudioFile(input_file) as f: | |
with AudioFile(output_file, 'w', f.samplerate, f.num_channels) as o: | |
# Read one second of audio at a time, until the file is empty: | |
while f.tell() < f.frames: | |
chunk = f.read(int(f.samplerate)) | |
effected = board(chunk, f.samplerate, reset=False) | |
o.write(effected) | |
def add_instrumental_effects(input_file, output_file, highpass_freq=100, lowpass_freq=12000, | |
reverb_room_size=0.5, reverb_damping=0.5, reverb_wet_level=0.25, | |
compressor_threshold_db=-20, compressor_ratio=2.5, compressor_attack_ms=15, compressor_release_ms=80, | |
gain_db=2): | |
effects = [ | |
HighpassFilter(cutoff_frequency_hz=highpass_freq), | |
LowpassFilter(cutoff_frequency_hz=lowpass_freq), | |
] | |
if reverb_room_size > 0 or reverb_damping > 0 or reverb_wet_level > 0: | |
effects.append(Reverb(room_size=reverb_room_size, damping=reverb_damping, wet_level=reverb_wet_level)) | |
effects.append(Compressor(threshold_db=compressor_threshold_db, ratio=compressor_ratio, | |
attack_ms=compressor_attack_ms, release_ms=compressor_release_ms)) | |
if gain_db: | |
effects.append(Gain(gain_db=gain_db)) | |
board = Pedalboard(effects) | |
with AudioFile(input_file) as f: | |
with AudioFile(output_file, 'w', f.samplerate, f.num_channels) as o: | |
# Read one second of audio at a time, until the file is empty: | |
while f.tell() < f.frames: | |
chunk = f.read(int(f.samplerate)) | |
effected = board(chunk, f.samplerate, reset=False) | |
o.write(effected) | |
def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, background_effects=True, | |
vocal_reverb_room_size=0.6, vocal_reverb_damping=0.6, vocal_reverb_wet_level=0.35, | |
vocal_delay_seconds=0.4, vocal_delay_mix=0.25, | |
vocal_compressor_threshold_db=-25, vocal_compressor_ratio=3.5, vocal_compressor_attack_ms=10, vocal_compressor_release_ms=60, | |
vocal_gain_db=4, | |
background_highpass_freq=120, background_lowpass_freq=11000, | |
background_reverb_room_size=0.5, background_reverb_damping=0.5, background_reverb_wet_level=0.25, | |
background_compressor_threshold_db=-20, background_compressor_ratio=2.5, background_compressor_attack_ms=15, background_compressor_release_ms=80, | |
background_gain_db=3): | |
if not media_file: | |
raise ValueError("The audio path is missing.") | |
if not stem: | |
raise ValueError("Please select 'vocal' or 'background' stem.") | |
hash_audio = str(get_hash(media_file)) | |
media_dir = os.path.dirname(media_file) | |
outputs = [] | |
start_time = time.time() | |
if stem == "vocal": | |
try: | |
_, _, _, _, vocal_audio = process_uvr_task( | |
orig_song_path=media_file, | |
song_id=hash_audio + "mdx", | |
main_vocals=main, | |
dereverb=dereverb, | |
remove_files_output_dir=False, | |
) | |
if vocal_effects: | |
suffix = '_effects' | |
file_name, file_extension = os.path.splitext(vocal_audio) | |
out_effects = file_name + suffix + file_extension | |
out_effects_path = os.path.join(media_dir, out_effects) | |
add_vocal_effects(vocal_audio, out_effects_path, | |
reverb_room_size=vocal_reverb_room_size, reverb_damping=vocal_reverb_damping, reverb_wet_level=vocal_reverb_wet_level, | |
delay_seconds=vocal_delay_seconds, delay_mix=vocal_delay_mix, | |
compressor_threshold_db=vocal_compressor_threshold_db, compressor_ratio=vocal_compressor_ratio, compressor_attack_ms=vocal_compressor_attack_ms, compressor_release_ms=vocal_compressor_release_ms, | |
gain_db=vocal_gain_db | |
) | |
vocal_audio = out_effects_path | |
outputs.append(vocal_audio) | |
except Exception as error: | |
logger.error(str(error)) | |
traceback.print_exc() | |
if stem == "background": | |
background_audio, _ = process_uvr_task( | |
orig_song_path=media_file, | |
song_id=hash_audio + "voiceless", | |
only_voiceless=True, | |
remove_files_output_dir=False, | |
) | |
if background_effects: | |
suffix = '_effects' | |
file_name, file_extension = os.path.splitext(background_audio) | |
out_effects = file_name + suffix + file_extension | |
out_effects_path = os.path.join(media_dir, out_effects) | |
add_instrumental_effects(background_audio, out_effects_path, | |
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq, | |
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level, | |
compressor_threshold_db=background_compressor_threshold_db, compressor_ratio=background_compressor_ratio, compressor_attack_ms=background_compressor_attack_ms, compressor_release_ms=background_compressor_release_ms, | |
gain_db=background_gain_db | |
) | |
background_audio = out_effects_path | |
outputs.append(background_audio) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
logger.info(f"Execution time: {execution_time} seconds") | |
if not outputs: | |
raise Exception("Error in sound separation.") | |
return outputs | |
def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, background_effects=True, | |
vocal_reverb_room_size=0.6, vocal_reverb_damping=0.6, vocal_reverb_dryness=0.8 ,vocal_reverb_wet_level=0.35, | |
vocal_delay_seconds=0.4, vocal_delay_mix=0.25, | |
vocal_compressor_threshold_db=-25, vocal_compressor_ratio=3.5, vocal_compressor_attack_ms=10, vocal_compressor_release_ms=60, | |
vocal_gain_db=4, | |
background_highpass_freq=120, background_lowpass_freq=11000, | |
background_reverb_room_size=0.5, background_reverb_damping=0.5, background_reverb_wet_level=0.25, | |
background_compressor_threshold_db=-20, background_compressor_ratio=2.5, background_compressor_attack_ms=15, background_compressor_release_ms=80, | |
background_gain_db=3): | |
if not media_file: | |
raise ValueError("The audio path is missing.") | |
if not stem: | |
raise ValueError("Please select 'vocal' or 'background' stem.") | |
hash_audio = str(get_hash(media_file)) | |
media_dir = os.path.dirname(media_file) | |
outputs = [] | |
start_time = time.time() | |
if stem == "vocal": | |
try: | |
_, _, _, _, vocal_audio = process_uvr_task( | |
orig_song_path=media_file, | |
song_id=hash_audio + "mdx", | |
main_vocals=main, | |
dereverb=dereverb, | |
remove_files_output_dir=False, | |
) | |
if vocal_effects: | |
suffix = '_effects' | |
file_name, file_extension = os.path.splitext(os.path.abspath(vocal_audio)) | |
out_effects = file_name + suffix + file_extension | |
out_effects_path = os.path.join(media_dir, out_effects) | |
add_vocal_effects(vocal_audio, out_effects_path, | |
reverb_room_size=vocal_reverb_room_size, reverb_damping=vocal_reverb_damping, vocal_reverb_dryness=vocal_reverb_dryness, reverb_wet_level=vocal_reverb_wet_level, | |
delay_seconds=vocal_delay_seconds, delay_mix=vocal_delay_mix, | |
compressor_threshold_db=vocal_compressor_threshold_db, compressor_ratio=vocal_compressor_ratio, compressor_attack_ms=vocal_compressor_attack_ms, compressor_release_ms=vocal_compressor_release_ms, | |
gain_db=vocal_gain_db | |
) | |
vocal_audio = out_effects_path | |
outputs.append(vocal_audio) | |
except Exception as error: | |
logger.error(str(error)) | |
if stem == "background": | |
background_audio, _ = process_uvr_task( | |
orig_song_path=media_file, | |
song_id=hash_audio + "voiceless", | |
only_voiceless=True, | |
remove_files_output_dir=False, | |
) | |
if background_effects: | |
suffix = '_effects' | |
file_name, file_extension = os.path.splitext(os.path.abspath(background_audio)) | |
out_effects = file_name + suffix + file_extension | |
out_effects_path = os.path.join(media_dir, out_effects) | |
print(file_name, file_extension, out_effects, out_effects_path) | |
add_instrumental_effects(background_audio, out_effects_path, | |
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq, | |
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level, | |
compressor_threshold_db=background_compressor_threshold_db, compressor_ratio=background_compressor_ratio, compressor_attack_ms=background_compressor_attack_ms, compressor_release_ms=background_compressor_release_ms, | |
gain_db=background_gain_db | |
) | |
background_audio = out_effects_path | |
outputs.append(background_audio) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
logger.info(f"Execution time: {execution_time} seconds") | |
if not outputs: | |
raise Exception("Error in sound separation.") | |
return outputs | |
def audio_conf(): | |
return gr.File( | |
label="Audio file", | |
# file_count="multiple", | |
type="filepath", | |
container=True, | |
) | |
def stem_conf(): | |
return gr.Radio( | |
choices=["vocal", "background"], | |
value="vocal", | |
label="Stem", | |
# info="", | |
) | |
def main_conf(): | |
return gr.Checkbox( | |
False, | |
label="Main", | |
# info="", | |
) | |
def dereverb_conf(): | |
return gr.Checkbox( | |
False, | |
label="Dereverb", | |
# info="", | |
visible=True, | |
) | |
def vocal_effects_conf(): | |
return gr.Checkbox( | |
False, | |
label="Vocal Effects", | |
# info="", | |
visible=True, | |
) | |
def background_effects_conf(): | |
return gr.Checkbox( | |
False, | |
label="Background Effects", | |
# info="", | |
visible=False, | |
) | |
def vocal_reverb_room_size_conf(): | |
return gr.Number( | |
0.15, | |
label="Vocal Reverb Room Size", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
visible=True, | |
) | |
def vocal_reverb_damping_conf(): | |
return gr.Number( | |
0.7, | |
label="Vocal Reverb Damping", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
visible=True, | |
) | |
def vocal_reverb_wet_level_conf(): | |
return gr.Number( | |
0.2, | |
label="Vocal Reverb Wet Level", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
visible=True, | |
) | |
def vocal_reverb_dryness_level_conf(): | |
return gr.Number( | |
0.8, | |
label="Vocal Reverb Dryness Level", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
visible=True, | |
) | |
def vocal_delay_seconds_conf(): | |
return gr.Number( | |
0., | |
label="Vocal Delay Seconds", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
visible=True, | |
) | |
def vocal_delay_mix_conf(): | |
return gr.Number( | |
0., | |
label="Vocal Delay Mix", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
visible=True, | |
) | |
def vocal_compressor_threshold_db_conf(): | |
return gr.Number( | |
-15, | |
label="Vocal Compressor Threshold (dB)", | |
minimum=-60, | |
maximum=0, | |
step=1, | |
visible=True, | |
) | |
def vocal_compressor_ratio_conf(): | |
return gr.Number( | |
4., | |
label="Vocal Compressor Ratio", | |
minimum=0, | |
maximum=20, | |
step=0.1, | |
visible=True, | |
) | |
def vocal_compressor_attack_ms_conf(): | |
return gr.Number( | |
1.0, | |
label="Vocal Compressor Attack (ms)", | |
minimum=0, | |
maximum=1000, | |
step=1, | |
visible=True, | |
) | |
def vocal_compressor_release_ms_conf(): | |
return gr.Number( | |
100, | |
label="Vocal Compressor Release (ms)", | |
minimum=0, | |
maximum=3000, | |
step=1, | |
visible=True, | |
) | |
def vocal_gain_db_conf(): | |
return gr.Number( | |
0, | |
label="Vocal Gain (dB)", | |
minimum=-40, | |
maximum=40, | |
step=1, | |
visible=True, | |
) | |
def background_highpass_freq_conf(): | |
return gr.Number( | |
120, | |
label="Background Highpass Frequency (Hz)", | |
minimum=0, | |
maximum=1000, | |
step=1, | |
visible=True, | |
) | |
def background_lowpass_freq_conf(): | |
return gr.Number( | |
11000, | |
label="Background Lowpass Frequency (Hz)", | |
minimum=0, | |
maximum=20000, | |
step=1, | |
visible=True, | |
) | |
def background_reverb_room_size_conf(): | |
return gr.Number( | |
0.1, | |
label="Background Reverb Room Size", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
visible=True, | |
) | |
def background_reverb_damping_conf(): | |
return gr.Number( | |
0.5, | |
label="Background Reverb Damping", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
visible=True, | |
) | |
def background_reverb_wet_level_conf(): | |
return gr.Number( | |
0.25, | |
label="Background Reverb Wet Level", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
visible=True, | |
) | |
def background_compressor_threshold_db_conf(): | |
return gr.Number( | |
-15, | |
label="Background Compressor Threshold (dB)", | |
minimum=-60, | |
maximum=0, | |
step=1, | |
visible=True, | |
) | |
def background_compressor_ratio_conf(): | |
return gr.Number( | |
4., | |
label="Background Compressor Ratio", | |
minimum=0, | |
maximum=20, | |
step=0.1, | |
visible=True, | |
) | |
def background_compressor_attack_ms_conf(): | |
return gr.Number( | |
15, | |
label="Background Compressor Attack (ms)", | |
minimum=0, | |
maximum=1000, | |
step=1, | |
visible=True, | |
) | |
def background_compressor_release_ms_conf(): | |
return gr.Number( | |
60, | |
label="Background Compressor Release (ms)", | |
minimum=0, | |
maximum=3000, | |
step=1, | |
visible=True, | |
) | |
def background_gain_db_conf(): | |
return gr.Number( | |
0, | |
label="Background Gain (dB)", | |
minimum=-40, | |
maximum=40, | |
step=1, | |
visible=True, | |
) | |
def button_conf(): | |
return gr.Button( | |
"Inference", | |
variant="primary", | |
) | |
def output_conf(): | |
return gr.File( | |
label="Result", | |
file_count="multiple", | |
interactive=False, | |
) | |
def show_vocal_components(value_name): | |
if value_name == "vocal": | |
return gr.update(visible=True), gr.update( | |
visible=True | |
), gr.update(visible=True), gr.update( | |
visible=False | |
) | |
else: | |
return gr.update(visible=False), gr.update( | |
visible=False | |
), gr.update(visible=False), gr.update( | |
visible=True | |
) | |
def get_gui(theme): | |
with gr.Blocks(theme=theme) as app: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
aud = audio_conf() | |
with gr.Column(): | |
with gr.Row(): | |
stem_gui = stem_conf() | |
with gr.Column(): | |
with gr.Row(): | |
main_gui = main_conf() | |
dereverb_gui = dereverb_conf() | |
vocal_effects_gui = vocal_effects_conf() | |
background_effects_gui = background_effects_conf() | |
# with gr.Column(): | |
with gr.Accordion("Vocal Effects Parameters", open=False): # with gr.Row(): | |
# gr.Label("Vocal Effects Parameters") | |
with gr.Row(): | |
vocal_reverb_room_size_gui = vocal_reverb_room_size_conf() | |
vocal_reverb_damping_gui = vocal_reverb_damping_conf() | |
vocal_reverb_dryness_gui = vocal_reverb_dryness_level_conf() | |
vocal_reverb_wet_level_gui = vocal_reverb_wet_level_conf() | |
vocal_delay_seconds_gui = vocal_delay_seconds_conf() | |
vocal_delay_mix_gui = vocal_delay_mix_conf() | |
vocal_compressor_threshold_db_gui = vocal_compressor_threshold_db_conf() | |
vocal_compressor_ratio_gui = vocal_compressor_ratio_conf() | |
vocal_compressor_attack_ms_gui = vocal_compressor_attack_ms_conf() | |
vocal_compressor_release_ms_gui = vocal_compressor_release_ms_conf() | |
vocal_gain_db_gui = vocal_gain_db_conf() | |
with gr.Accordion("Background Effects Parameters", open=False): # with gr.Row(): | |
# gr.Label("Background Effects Parameters") | |
with gr.Row(): | |
background_highpass_freq_gui = background_highpass_freq_conf() | |
background_lowpass_freq_gui = background_lowpass_freq_conf() | |
background_reverb_room_size_gui = background_reverb_room_size_conf() | |
background_reverb_damping_gui = background_reverb_damping_conf() | |
background_reverb_wet_level_gui = background_reverb_wet_level_conf() | |
background_compressor_threshold_db_gui = background_compressor_threshold_db_conf() | |
background_compressor_ratio_gui = background_compressor_ratio_conf() | |
background_compressor_attack_ms_gui = background_compressor_attack_ms_conf() | |
background_compressor_release_ms_gui = background_compressor_release_ms_conf() | |
background_gain_db_gui = background_gain_db_conf() | |
stem_gui.change( | |
show_vocal_components, | |
[stem_gui], | |
[main_gui, dereverb_gui, vocal_effects_gui, background_effects_gui], | |
) | |
button_base = button_conf() | |
output_base = output_conf() | |
button_base.click( | |
sound_separate, | |
inputs=[ | |
aud, | |
stem_gui, | |
main_gui, | |
dereverb_gui, | |
vocal_effects_gui, | |
background_effects_gui, | |
vocal_reverb_room_size_gui, vocal_reverb_damping_gui, vocal_reverb_dryness_gui, vocal_reverb_wet_level_gui, | |
vocal_delay_seconds_gui, vocal_delay_mix_gui, vocal_compressor_threshold_db_gui, vocal_compressor_ratio_gui, | |
vocal_compressor_attack_ms_gui, vocal_compressor_release_ms_gui, vocal_gain_db_gui, | |
background_highpass_freq_gui, background_lowpass_freq_gui, background_reverb_room_size_gui, | |
background_reverb_damping_gui, background_reverb_wet_level_gui, background_compressor_threshold_db_gui, | |
background_compressor_ratio_gui, background_compressor_attack_ms_gui, background_compressor_release_ms_gui, | |
background_gain_db_gui, | |
], | |
outputs=[output_base], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"./test.mp3", | |
"vocal", | |
False, | |
False, | |
False, | |
False, | |
0.15, 0.7, 0.8, 0.2, | |
0., 0., -15, 4., 1, 100, 0, | |
120, 11000, 0.5, 0.1, 0.25, -15, 4., 15, 60, 0, | |
], | |
], | |
fn=sound_separate, | |
inputs=[ | |
aud, | |
stem_gui, | |
main_gui, | |
dereverb_gui, | |
vocal_effects_gui, | |
background_effects_gui, | |
vocal_reverb_room_size_gui, vocal_reverb_damping_gui, vocal_reverb_dryness_gui, vocal_reverb_wet_level_gui, | |
vocal_delay_seconds_gui, vocal_delay_mix_gui, vocal_compressor_threshold_db_gui, vocal_compressor_ratio_gui, | |
vocal_compressor_attack_ms_gui, vocal_compressor_release_ms_gui, vocal_gain_db_gui, | |
background_highpass_freq_gui, background_lowpass_freq_gui, background_reverb_room_size_gui, | |
background_reverb_damping_gui, background_reverb_wet_level_gui, background_compressor_threshold_db_gui, | |
background_compressor_ratio_gui, background_compressor_attack_ms_gui, background_compressor_release_ms_gui, | |
background_gain_db_gui, | |
], | |
outputs=[output_base], | |
cache_examples=False, | |
) | |
return app | |
if __name__ == "__main__": | |
for id_model in UVR_MODELS: | |
download_manager( | |
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir | |
) | |
app = get_gui(theme) | |
app.queue(default_concurrency_limit=40) | |
app.launch( | |
max_threads=40, | |
share=False, | |
show_error=True, | |
quiet=False, | |
debug=False, | |
) | |