Magic-plus-1 / data_utils /convert_npz_to_mesh_rig.py
HF User
πŸš€ Fresh deploy of Magic Articulate Enhanced MVP
e7b9fb6
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
You can convert npz file back to obj(mesh) and txt(rig) files using this python script.
"""
import os
import numpy as np
import scipy.sparse as sp
def export_obj(vertices, faces, normals, output_path):
with open(output_path, 'w') as f:
for v in vertices:
f.write(f"v {v[0]} {v[1]} {v[2]}\n")
for n in normals:
f.write(f"vn {n[0]} {n[1]} {n[2]}\n")
for i, face in enumerate(faces):
# OBJ format is 1-based, so we add 1 to all indices
f.write(f"f {face[0]+1}//{face[0]+1} {face[1]+1}//{face[1]+1} {face[2]+1}//{face[2]+1}\n")
def export_rig_txt(joints, bones, root_index, joint_names, skinning_weights, output_path):
"""
joints [joint_name] [x] [y] [z]
root [root_joint_name]
skin [vertex_index] [joint_name1] [weight1] [joint_name2] [weight2] ...
hier [parent_joint_name] [child_joint_name]
"""
n_joints = len(joints)
n_verts = skinning_weights.shape[0] # (n_vertex, n_joints)
with open(output_path, 'w') as f:
# 1) joints
for i in range(n_joints):
x, y, z = joints[i]
jn = joint_names[i]
f.write(f"joints {jn} {x} {y} {z}\n")
# 2) root
root_name = joint_names[root_index]
f.write(f"root {root_name}\n")
# 3) skin
for vidx in range(n_verts):
row_weights = skinning_weights[vidx]
non_zero_indices = np.where(row_weights != 0)[0]
if len(non_zero_indices) == 0:
continue
line_parts = [f"skin {vidx}"] # vertex_idx
for jidx in non_zero_indices:
w = row_weights[jidx]
jn = joint_names[jidx]
line_parts.append(jn)
line_parts.append(str(w))
f.write(" ".join(line_parts) + "\n")
# 4) hier
for p_idx, c_idx in bones:
p_name = joint_names[p_idx]
c_name = joint_names[c_idx]
f.write(f"hier {p_name} {c_name}\n")
if __name__ == "__main__":
data = np.load('articulation_xlv2_test.npz', allow_pickle=True)
data_list = data['arr_0']
print(f"Loaded {len(data_list)} data entries")
model_data = data_list[0]
print("Data keys:", model_data.keys())
# 'vertices', 'faces', 'normals', 'joints', 'bones', 'root_index', 'uuid', 'joint_names',
# 'skinning_weights_value', 'skinning_weights_row', 'skinning_weights_col', 'skinning_weights_shape'
vertices = model_data['vertices'] # (n_vertex, 3)
faces = model_data['faces'] # (n_faces, 3)
normals = model_data['normals'] # (n_vertex, 3)
joints = model_data['joints'] # (n_joints, 3)
bones = model_data['bones'] # (n_bones, 2)
root_index = model_data['root_index'] # int
joint_names = model_data['joint_names'] # list of str
uuid_str = model_data['uuid']
skin_val = model_data['skinning_weights_value']
skin_row = model_data['skinning_weights_row']
skin_col = model_data['skinning_weights_col']
skin_shape = model_data['skinning_weights_shape']
skin_sparse = sp.coo_matrix((skin_val, (skin_row, skin_col)), shape=skin_shape)
skinning_weights = skin_sparse.toarray() # (n_vertex, n_joints)
obj_path = f"{uuid_str}.obj"
export_obj(vertices, faces, normals, obj_path)
rig_txt_path = f"{uuid_str}.txt"
export_rig_txt(joints, bones, root_index, joint_names, skinning_weights, rig_txt_path)
print("Done!")