Spaces:
Running
Running
import argparse | |
import json | |
import os | |
import re | |
import wave | |
from random import shuffle | |
from loguru import logger | |
from tqdm import tqdm | |
import diffusion.logger.utils as du | |
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$') | |
def get_wav_duration(file_path): | |
with wave.open(file_path, 'rb') as wav_file: | |
# 获取音频帧数 | |
n_frames = wav_file.getnframes() | |
# 获取采样率 | |
framerate = wav_file.getframerate() | |
# 计算时长(秒) | |
duration = n_frames / float(framerate) | |
return duration | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list") | |
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list") | |
parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir") | |
parser.add_argument("--speech_encoder", type=str, default="vec768l12", help="choice a speech encoder|'vec768l12','vec256l9','hubertsoft','whisper-ppg','cnhubertlarge','dphubert','whisper-ppg-large','wavlmbase+'") | |
parser.add_argument("--vol_aug", action="store_true", help="Whether to use volume embedding and volume augmentation") | |
parser.add_argument("--tiny", action="store_true", help="Whether to train sovits tiny") | |
args = parser.parse_args() | |
config_template = json.load(open("configs_template/config_tiny_template.json")) if args.tiny else json.load(open("configs_template/config_template.json")) | |
train = [] | |
val = [] | |
idx = 0 | |
spk_dict = {} | |
spk_id = 0 | |
for speaker in tqdm(os.listdir(args.source_dir)): | |
spk_dict[speaker] = spk_id | |
spk_id += 1 | |
wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))] | |
new_wavs = [] | |
for file in wavs: | |
if not file.endswith("wav"): | |
continue | |
if not pattern.match(file): | |
logger.warning(f"文件名{file}中包含非字母数字下划线,可能会导致错误。(也可能不会)") | |
if get_wav_duration(file) < 0.3: | |
logger.info("Skip too short audio:" + file) | |
continue | |
new_wavs.append(file) | |
wavs = new_wavs | |
shuffle(wavs) | |
train += wavs[2:] | |
val += wavs[:2] | |
shuffle(train) | |
shuffle(val) | |
logger.info("Writing" + args.train_list) | |
with open(args.train_list, "w") as f: | |
for fname in tqdm(train): | |
wavpath = fname | |
f.write(wavpath + "\n") | |
logger.info("Writing" + args.val_list) | |
with open(args.val_list, "w") as f: | |
for fname in tqdm(val): | |
wavpath = fname | |
f.write(wavpath + "\n") | |
d_config_template = du.load_config("configs_template/diffusion_template.yaml") | |
d_config_template["model"]["n_spk"] = spk_id | |
d_config_template["data"]["encoder"] = args.speech_encoder | |
d_config_template["spk"] = spk_dict | |
config_template["spk"] = spk_dict | |
config_template["model"]["n_speakers"] = spk_id | |
config_template["model"]["speech_encoder"] = args.speech_encoder | |
if args.speech_encoder == "vec768l12" or args.speech_encoder == "dphubert" or args.speech_encoder == "wavlmbase+": | |
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 768 | |
d_config_template["data"]["encoder_out_channels"] = 768 | |
elif args.speech_encoder == "vec256l9" or args.speech_encoder == 'hubertsoft': | |
config_template["model"]["ssl_dim"] = config_template["model"]["gin_channels"] = 256 | |
d_config_template["data"]["encoder_out_channels"] = 256 | |
elif args.speech_encoder == "whisper-ppg" or args.speech_encoder == 'cnhubertlarge': | |
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 1024 | |
d_config_template["data"]["encoder_out_channels"] = 1024 | |
elif args.speech_encoder == "whisper-ppg-large": | |
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 1280 | |
d_config_template["data"]["encoder_out_channels"] = 1280 | |
if args.vol_aug: | |
config_template["train"]["vol_aug"] = config_template["model"]["vol_embedding"] = True | |
if args.tiny: | |
config_template["model"]["filter_channels"] = 512 | |
logger.info("Writing to configs/config.json") | |
with open("configs/config.json", "w") as f: | |
json.dump(config_template, f, indent=2) | |
logger.info("Writing to configs/diffusion.yaml") | |
du.save_config("configs/diffusion.yaml",d_config_template) | |