Spaces:
Running
Running
from typing import Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from modules.F0Predictor.F0Predictor import F0Predictor | |
from .fcpe.model import FCPEInfer | |
class FCPEF0Predictor(F0Predictor): | |
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100, | |
threshold=0.05): | |
self.fcpe = FCPEInfer(model_path="pretrain/fcpe.pt", device=device, dtype=dtype) | |
self.hop_length = hop_length | |
self.f0_min = f0_min | |
self.f0_max = f0_max | |
if device is None: | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
else: | |
self.device = device | |
self.threshold = threshold | |
self.sampling_rate = sampling_rate | |
self.dtype = dtype | |
self.name = "fcpe" | |
def repeat_expand( | |
self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest" | |
): | |
ndim = content.ndim | |
if content.ndim == 1: | |
content = content[None, None] | |
elif content.ndim == 2: | |
content = content[None] | |
assert content.ndim == 3 | |
is_np = isinstance(content, np.ndarray) | |
if is_np: | |
content = torch.from_numpy(content) | |
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) | |
if is_np: | |
results = results.numpy() | |
if ndim == 1: | |
return results[0, 0] | |
elif ndim == 2: | |
return results[0] | |
def post_process(self, x, sampling_rate, f0, pad_to): | |
if isinstance(f0, np.ndarray): | |
f0 = torch.from_numpy(f0).float().to(x.device) | |
if pad_to is None: | |
return f0 | |
f0 = self.repeat_expand(f0, pad_to) | |
vuv_vector = torch.zeros_like(f0) | |
vuv_vector[f0 > 0.0] = 1.0 | |
vuv_vector[f0 <= 0.0] = 0.0 | |
# 去掉0频率, 并线性插值 | |
nzindex = torch.nonzero(f0).squeeze() | |
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() | |
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() | |
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate | |
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0] | |
if f0.shape[0] <= 0: | |
return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy() | |
if f0.shape[0] == 1: | |
return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[ | |
0]).cpu().numpy(), vuv_vector.cpu().numpy() | |
# 大概可以用 torch 重写? | |
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) | |
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0)) | |
return f0, vuv_vector.cpu().numpy() | |
def compute_f0(self, wav, p_len=None): | |
x = torch.FloatTensor(wav).to(self.dtype).to(self.device) | |
if p_len is None: | |
p_len = x.shape[0] // self.hop_length | |
else: | |
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error" | |
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0] | |
if torch.all(f0 == 0): | |
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) | |
return rtn, rtn | |
return self.post_process(x, self.sampling_rate, f0, p_len)[0] | |
def compute_f0_uv(self, wav, p_len=None): | |
x = torch.FloatTensor(wav).to(self.dtype).to(self.device) | |
if p_len is None: | |
p_len = x.shape[0] // self.hop_length | |
else: | |
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error" | |
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0,:,0] | |
if torch.all(f0 == 0): | |
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) | |
return rtn, rtn | |
return self.post_process(x, self.sampling_rate, f0, p_len) |