Spaces:
Running
Running
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0 | |
# LICENSE is in incl_licenses directory. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import pow, sin | |
from torch.nn import Parameter | |
from .resample import DownSample1d, UpSample1d | |
class Activation1d(nn.Module): | |
def __init__(self, | |
activation, | |
up_ratio: int = 2, | |
down_ratio: int = 2, | |
up_kernel_size: int = 12, | |
down_kernel_size: int = 12): | |
super().__init__() | |
self.up_ratio = up_ratio | |
self.down_ratio = down_ratio | |
self.act = activation | |
self.upsample = UpSample1d(up_ratio, up_kernel_size) | |
self.downsample = DownSample1d(down_ratio, down_kernel_size) | |
# x: [B,C,T] | |
def forward(self, x): | |
x = self.upsample(x) | |
x = self.act(x) | |
x = self.downsample(x) | |
return x | |
class SnakeBeta(nn.Module): | |
''' | |
A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
References: | |
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snakebeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
''' | |
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False): | |
''' | |
Initialization. | |
INPUT: | |
- in_features: shape of the input | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
beta is initialized to 1 by default, higher values = higher-magnitude. | |
alpha will be trained along with the rest of your model. | |
''' | |
super(SnakeBeta, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = Parameter(torch.zeros(in_features) * alpha) | |
self.beta = Parameter(torch.zeros(in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = Parameter(torch.ones(in_features) * alpha) | |
self.beta = Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
''' | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
SnakeBeta = x + 1/b * sin^2 (xa) | |
''' | |
alpha = self.alpha.unsqueeze( | |
0).unsqueeze(-1) # line up with x to [B, C, T] | |
beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
beta = torch.exp(beta) | |
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
return x | |
class Mish(nn.Module): | |
""" | |
Mish activation function is proposed in "Mish: A Self | |
Regularized Non-Monotonic Neural Activation Function" | |
paper, https://arxiv.org/abs/1908.08681. | |
""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x * torch.tanh(F.softplus(x)) | |
class SnakeAlias(nn.Module): | |
def __init__(self, | |
channels, | |
up_ratio: int = 2, | |
down_ratio: int = 2, | |
up_kernel_size: int = 12, | |
down_kernel_size: int = 12, | |
C = None): | |
super().__init__() | |
self.up_ratio = up_ratio | |
self.down_ratio = down_ratio | |
self.act = SnakeBeta(channels, alpha_logscale=True) | |
self.upsample = UpSample1d(up_ratio, up_kernel_size, C) | |
self.downsample = DownSample1d(down_ratio, down_kernel_size, C) | |
# x: [B,C,T] | |
def forward(self, x, C=None): | |
x = self.upsample(x, C) | |
x = self.act(x) | |
x = self.downsample(x) | |
return x |