Spaces:
Paused
Paused
add app
Browse files- app.py +201 -0
- ciff_dataset.py +214 -0
- train_controlnet.py +1239 -0
- train_multi_open.py +1192 -0
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import einops
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from pytorch_lightning import seed_everything
|
13 |
+
from annotator.util import resize_image, HWC3
|
14 |
+
from torch.nn.functional import threshold, normalize, interpolate
|
15 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
16 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
|
21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
|
23 |
+
parseargs = argparse.ArgumentParser()
|
24 |
+
parseargs.add_argument('--pretrained_model', type=str, default='runwayml/stable-diffusion-v1-5')
|
25 |
+
parseargs.add_argument('--controlnet', type=str, default='controlnet')
|
26 |
+
parseargs.add_argument('--precision', type=str, default='fp32')
|
27 |
+
args = parseargs.parse_args()
|
28 |
+
pretrained_model = args.pretrained_model
|
29 |
+
|
30 |
+
# Check for different hardware architectures
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
device = "cuda"
|
33 |
+
# Check for xformers
|
34 |
+
try:
|
35 |
+
import xformers
|
36 |
+
|
37 |
+
enable_xformers = True
|
38 |
+
except ImportError:
|
39 |
+
enable_xformers = False
|
40 |
+
elif torch.backends.mps.is_available():
|
41 |
+
device = "mps"
|
42 |
+
else:
|
43 |
+
device = "cpu"
|
44 |
+
|
45 |
+
print(f"Using device: {device}")
|
46 |
+
|
47 |
+
# Load models
|
48 |
+
if args.precision == 'fp32':
|
49 |
+
torch_dtype = torch.float32
|
50 |
+
elif args.precision == 'fp16':
|
51 |
+
torch_dtype = torch.float16
|
52 |
+
elif args.precision == 'bf16':
|
53 |
+
torch_dtype = torch.bfloat16
|
54 |
+
else:
|
55 |
+
raise ValueError(f"Invalid precision: {args.precision}")
|
56 |
+
|
57 |
+
controlnet = ControlNetModel.from_pretrained(args.controlnet, torch_dtype=torch_dtype)
|
58 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
59 |
+
args.pretrained_model, controlnet=controlnet, torch_dtype=torch_dtype
|
60 |
+
)
|
61 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
62 |
+
pipe = pipe.to(device)
|
63 |
+
|
64 |
+
# Apply optimizations based on hardware
|
65 |
+
if device == "cuda":
|
66 |
+
pipe = pipe.to(device)
|
67 |
+
if enable_xformers:
|
68 |
+
pipe.enable_xformers_memory_efficient_attention()
|
69 |
+
print("xformers optimization enabled")
|
70 |
+
elif device == "mps":
|
71 |
+
pipe = pipe.to(device)
|
72 |
+
pipe.enable_attention_slicing()
|
73 |
+
print("Attention slicing enabled for Apple Silicon")
|
74 |
+
else:
|
75 |
+
# CPU-specific optimizations
|
76 |
+
pipe = pipe.to(device)
|
77 |
+
# pipe.enable_sequential_cpu_offload()
|
78 |
+
# pipe.enable_attention_slicing()
|
79 |
+
|
80 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
|
81 |
+
segmodel = SegformerForSemanticSegmentation.from_pretrained("matei-dorian/segformer-b5-finetuned-human-parsing")
|
82 |
+
|
83 |
+
|
84 |
+
def LGB_TO_RGB(gray_image, rgb_image):
|
85 |
+
# gray_image [H, W, 3]
|
86 |
+
# rgb_image [H, W, 3]
|
87 |
+
|
88 |
+
print("gray_image shape: ", gray_image.shape)
|
89 |
+
print("rgb_image shape: ", rgb_image.shape)
|
90 |
+
|
91 |
+
gray_image = cv2.cvtColor(gray_image, cv2.COLOR_RGB2GRAY)
|
92 |
+
lab_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2LAB)
|
93 |
+
lab_image[:, :, 0] = gray_image[:, :]
|
94 |
+
|
95 |
+
return cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
|
96 |
+
|
97 |
+
|
98 |
+
@torch.inference_mode()
|
99 |
+
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength,
|
100 |
+
guidance_scale, seed, eta, threshold, save_memory=False):
|
101 |
+
with torch.no_grad():
|
102 |
+
img = resize_image(input_image, image_resolution)
|
103 |
+
H, W, C = img.shape
|
104 |
+
print("img shape: ", img.shape)
|
105 |
+
if C == 3:
|
106 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
107 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
108 |
+
control = torch.from_numpy(img).to(device).float()
|
109 |
+
control = control / 255.0
|
110 |
+
control = rearrange(control, 'h w c -> 1 c h w')
|
111 |
+
# control = repeat(control, 'b c h w -> b c h w', b=num_samples)
|
112 |
+
# control = rearrange(control, 'b h w c -> b c h w')
|
113 |
+
|
114 |
+
if a_prompt:
|
115 |
+
prompt = prompt + ', ' + a_prompt
|
116 |
+
|
117 |
+
if seed == -1:
|
118 |
+
seed = random.randint(0, 65535)
|
119 |
+
seed_everything(seed)
|
120 |
+
|
121 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
122 |
+
# Generate images
|
123 |
+
output = pipe(
|
124 |
+
num_images_per_prompt=num_samples,
|
125 |
+
prompt=prompt,
|
126 |
+
image=control.to(device),
|
127 |
+
negative_prompt=n_prompt,
|
128 |
+
num_inference_steps=ddim_steps,
|
129 |
+
guidance_scale=guidance_scale,
|
130 |
+
generator=generator,
|
131 |
+
eta=eta,
|
132 |
+
strength=strength,
|
133 |
+
output_type='np',
|
134 |
+
|
135 |
+
).images
|
136 |
+
|
137 |
+
# output = einops.rearrange(output, 'b c h w -> b h w c')
|
138 |
+
output = (output * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
139 |
+
|
140 |
+
results = [output[i] for i in range(num_samples)]
|
141 |
+
results = [LGB_TO_RGB(img, result) for result in results]
|
142 |
+
|
143 |
+
# results의 각 이미지를 mask로 변환
|
144 |
+
masks = []
|
145 |
+
for result in results:
|
146 |
+
inputs = feature_extractor(images=result, return_tensors="pt")
|
147 |
+
outputs = segmodel(**inputs)
|
148 |
+
logits = outputs.logits
|
149 |
+
logits = logits.squeeze(0)
|
150 |
+
thresholded = torch.zeros_like(logits)
|
151 |
+
thresholded[logits > threshold] = 1
|
152 |
+
mask = thresholded[1:, :, :].sum(dim=0)
|
153 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
154 |
+
mask = interpolate(mask, size=(H, W), mode='bilinear')
|
155 |
+
mask = mask.detach().numpy()
|
156 |
+
mask = np.squeeze(mask)
|
157 |
+
mask = np.where(mask > threshold, 1, 0)
|
158 |
+
masks.append(mask)
|
159 |
+
|
160 |
+
# results의 각 이미지를 mask를 이용해 mask가 0인 부분은 img 즉 흑백 이미지로 변환.
|
161 |
+
# img를 channel이 3인 rgb 이미지로 변환
|
162 |
+
final = [img * (1 - mask[:, :, None]) + result * mask[:, :, None] for result, mask in zip(results, masks)]
|
163 |
+
|
164 |
+
# mask to 255 img
|
165 |
+
|
166 |
+
mask_img = [mask * 255 for mask in masks]
|
167 |
+
return [img] + results + mask_img + final
|
168 |
+
|
169 |
+
|
170 |
+
block = gr.Blocks().queue()
|
171 |
+
with block:
|
172 |
+
with gr.Row():
|
173 |
+
gr.Markdown("## Control Stable Diffusion with Gray Image")
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
input_image = gr.Image(sources=['upload'], type="numpy")
|
177 |
+
prompt = gr.Textbox(label="Prompt")
|
178 |
+
run_button = gr.Button(value="Run")
|
179 |
+
with gr.Accordion("Advanced options", open=False):
|
180 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=1, value=1, step=1, visible=False)
|
181 |
+
# num_samples = 1
|
182 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
183 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
|
184 |
+
# guess_mode = gr.Checkbox(label='Guess Mode', value=False)
|
185 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
|
186 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=1.0, step=0.1)
|
187 |
+
threshold = gr.Slider(label="Segmentation Threshold", minimum=0.1, maximum=0.9, value=0.5, step=0.05)
|
188 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1)
|
189 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
190 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
191 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
192 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
193 |
+
with gr.Column():
|
194 |
+
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
195 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
|
196 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, strength, scale, seed,
|
197 |
+
eta, threshold]
|
198 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery], concurrency_limit=4)
|
199 |
+
|
200 |
+
block.queue(max_size=100)
|
201 |
+
block.launch(share=True)
|
ciff_dataset.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from concurrent.futures import ProcessPoolExecutor
|
4 |
+
from pathlib import Path
|
5 |
+
import json
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
import argparse
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
# 인자 파싱
|
12 |
+
parser = argparse.ArgumentParser(description="Dataset creation for image colorization")
|
13 |
+
parser.add_argument("--source_dir", type=str, required=True, help="Source directory")
|
14 |
+
parser.add_argument(
|
15 |
+
"--target_dir", type=str, required=True, help="Target directory for the dataset"
|
16 |
+
)
|
17 |
+
parser.add_argument(
|
18 |
+
"--resolution", type=int, default=512, help="Resolution for the dataset"
|
19 |
+
)
|
20 |
+
args = parser.parse_args()
|
21 |
+
|
22 |
+
# 경로 설정
|
23 |
+
root_dir = Path("E:/datasets")
|
24 |
+
target_dir = root_dir / args.target_dir
|
25 |
+
source_dir = root_dir / args.source_dir
|
26 |
+
target_images_dir = target_dir / "images"
|
27 |
+
target_conditioning_dir = target_dir / "conditioning_images"
|
28 |
+
metadata_file = target_dir / "metadata.jsonl"
|
29 |
+
|
30 |
+
# 디렉토리 생성
|
31 |
+
target_dir.mkdir(parents=True, exist_ok=True)
|
32 |
+
target_images_dir.mkdir(exist_ok=True)
|
33 |
+
target_conditioning_dir.mkdir(exist_ok=True)
|
34 |
+
|
35 |
+
# 프롬프트 목록
|
36 |
+
prompts = [
|
37 |
+
"a color image, realistic style, photo",
|
38 |
+
"a color image, high resolution, realistic, painting",
|
39 |
+
"a color image, high resolution, realistic, photo",
|
40 |
+
"very good quality, absurd, photo, color, 4k image",
|
41 |
+
"high resolution, color, photo, realistic",
|
42 |
+
"high resolution, color, photo, realistic, 4k image",
|
43 |
+
"a color image, high resolution, realistic, 4k image",
|
44 |
+
"color, high resolution, photo, realistic",
|
45 |
+
"512x512, color, photo, realistic",
|
46 |
+
]
|
47 |
+
|
48 |
+
|
49 |
+
def process_image(image_path):
|
50 |
+
try:
|
51 |
+
# 이미지 로드 및 크롭
|
52 |
+
with Image.open(image_path) as img:
|
53 |
+
# 이미지 크기 확인
|
54 |
+
width, height = img.size
|
55 |
+
size = min(width, height)
|
56 |
+
left = (width - size) // 2
|
57 |
+
top = (height - size) // 2
|
58 |
+
right = left + size
|
59 |
+
bottom = top + size
|
60 |
+
|
61 |
+
# 크롭 및 리사이즈
|
62 |
+
img_cropped = img.crop((left, top, right, bottom)).resize(
|
63 |
+
(args.resolution, args.resolution), Image.LANCZOS
|
64 |
+
)
|
65 |
+
|
66 |
+
# 그레이스케일 변환
|
67 |
+
img_gray = img_cropped.convert("L")
|
68 |
+
|
69 |
+
# 파일명 생성
|
70 |
+
filename = image_path.stem + ".jpg"
|
71 |
+
|
72 |
+
# 이미지 저장
|
73 |
+
img_cropped.save(target_images_dir / filename)
|
74 |
+
img_gray.save(target_conditioning_dir / filename)
|
75 |
+
|
76 |
+
# 메타데이터 생성
|
77 |
+
metadata = {
|
78 |
+
"image": str(filename),
|
79 |
+
"text": random.choice(prompts),
|
80 |
+
"conditioning_image": str(filename),
|
81 |
+
}
|
82 |
+
|
83 |
+
return metadata
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error processing {image_path}: {e}")
|
86 |
+
return None
|
87 |
+
|
88 |
+
|
89 |
+
def generate_dataset_loader(target_dir):
|
90 |
+
# 대상 디렉토리의 이름을 가져옵니다
|
91 |
+
dir_name = target_dir.name
|
92 |
+
|
93 |
+
# 클래스 이름을 생성합니다 (예: ciff_dataset -> CiffDataset)
|
94 |
+
class_name = ''.join(word.capitalize() for word in dir_name.split('_'))
|
95 |
+
|
96 |
+
# 파일 이름을 생성합니다
|
97 |
+
file_name = f"{dir_name}.py"
|
98 |
+
|
99 |
+
# 파일 경로를 생성합니다
|
100 |
+
file_path = target_dir / file_name
|
101 |
+
|
102 |
+
# 데이터셋 로더 코드를 생성합니다
|
103 |
+
code = f'''
|
104 |
+
import pandas as pd
|
105 |
+
from pathlib import Path
|
106 |
+
import datasets
|
107 |
+
import os
|
108 |
+
|
109 |
+
_VERSION = datasets.Version("0.0.2")
|
110 |
+
|
111 |
+
_DESCRIPTION = "TODO"
|
112 |
+
_HOMEPAGE = "TODO"
|
113 |
+
_LICENSE = "TODO"
|
114 |
+
_CITATION = "TODO"
|
115 |
+
|
116 |
+
_FEATURES = datasets.Features(
|
117 |
+
{{
|
118 |
+
"image": datasets.Image(),
|
119 |
+
"conditioning_image": datasets.Image(),
|
120 |
+
"text": datasets.Value("string"),
|
121 |
+
}}
|
122 |
+
)
|
123 |
+
|
124 |
+
_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)
|
125 |
+
|
126 |
+
|
127 |
+
class {class_name}(datasets.GeneratorBasedBuilder):
|
128 |
+
BUILDER_CONFIGS = [_DEFAULT_CONFIG]
|
129 |
+
DEFAULT_CONFIG_NAME = "default"
|
130 |
+
|
131 |
+
def _info(self):
|
132 |
+
return datasets.DatasetInfo(
|
133 |
+
description=_DESCRIPTION,
|
134 |
+
features=_FEATURES,
|
135 |
+
supervised_keys=None,
|
136 |
+
homepage=_HOMEPAGE,
|
137 |
+
license=_LICENSE,
|
138 |
+
citation=_CITATION,
|
139 |
+
)
|
140 |
+
|
141 |
+
def _split_generators(self, dl_manager):
|
142 |
+
base_path = Path(dl_manager._base_path)
|
143 |
+
metadata_path = base_path / "metadata.jsonl"
|
144 |
+
images_dir = base_path / "images"
|
145 |
+
conditioning_images_dir = base_path / "conditioning_images"
|
146 |
+
|
147 |
+
return [
|
148 |
+
datasets.SplitGenerator(
|
149 |
+
name=datasets.Split.TRAIN,
|
150 |
+
gen_kwargs={{
|
151 |
+
"metadata_path": metadata_path,
|
152 |
+
"images_dir": images_dir,
|
153 |
+
"conditioning_images_dir": conditioning_images_dir,
|
154 |
+
}},
|
155 |
+
),
|
156 |
+
]
|
157 |
+
|
158 |
+
def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
|
159 |
+
metadata = pd.read_json(metadata_path, lines=True)
|
160 |
+
|
161 |
+
for idx, row in metadata.iterrows():
|
162 |
+
text = row["text"]
|
163 |
+
|
164 |
+
image_path = os.path.join(images_dir, row["image"])
|
165 |
+
image = open(image_path, "rb").read()
|
166 |
+
|
167 |
+
conditioning_image_path = os.path.join(conditioning_images_dir, row["conditioning_image"])
|
168 |
+
conditioning_image = open(conditioning_image_path, "rb").read()
|
169 |
+
|
170 |
+
yield idx, {{
|
171 |
+
"text": text,
|
172 |
+
"image": {{
|
173 |
+
"path": image_path,
|
174 |
+
"bytes": image,
|
175 |
+
}},
|
176 |
+
"conditioning_image": {{
|
177 |
+
"path": conditioning_image_path,
|
178 |
+
"bytes": conditioning_image,
|
179 |
+
}},
|
180 |
+
}}
|
181 |
+
'''
|
182 |
+
|
183 |
+
# 파일을 생성하고 코드를 작성합니다
|
184 |
+
with open(file_path, 'w') as f:
|
185 |
+
f.write(code)
|
186 |
+
|
187 |
+
print(f"데이터셋 로더 파일이 생성되었습니다: {file_path}")
|
188 |
+
|
189 |
+
|
190 |
+
def main():
|
191 |
+
# 이미지 파일 목록 가져오기
|
192 |
+
image_files = list(source_dir.glob("*"))
|
193 |
+
|
194 |
+
# 프로세스 수 설정 (CPU 코어 수 - 1)
|
195 |
+
num_workers = (3 * os.cpu_count()) // 4
|
196 |
+
|
197 |
+
# 멀티프로세싱 실행
|
198 |
+
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
199 |
+
results = list(tqdm(executor.map(process_image, image_files), total=len(image_files), desc="Processing images"))
|
200 |
+
|
201 |
+
# 메타데이터 저장
|
202 |
+
with open(metadata_file, "w") as f:
|
203 |
+
for metadata in results:
|
204 |
+
if metadata:
|
205 |
+
json.dump(metadata, f)
|
206 |
+
f.write("\n")
|
207 |
+
|
208 |
+
# 데이터셋 로더 파일 생성
|
209 |
+
generate_dataset_loader(target_dir)
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
main()
|
214 |
+
print(f"Dataset creation completed. Output directory: {target_dir}")
|
train_controlnet.py
ADDED
@@ -0,0 +1,1239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import contextlib
|
18 |
+
import gc
|
19 |
+
import logging
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
import random
|
23 |
+
import shutil
|
24 |
+
from functools import partial
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
import accelerate
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
import torch.nn.functional as F
|
31 |
+
import torch.utils.checkpoint
|
32 |
+
import transformers
|
33 |
+
from accelerate import Accelerator
|
34 |
+
from accelerate.logging import get_logger
|
35 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
36 |
+
from datasets import load_dataset, Features, Value, Image
|
37 |
+
from huggingface_hub import create_repo, upload_folder
|
38 |
+
from packaging import version
|
39 |
+
from PIL import Image
|
40 |
+
from torchvision import transforms
|
41 |
+
from tqdm.auto import tqdm
|
42 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
43 |
+
|
44 |
+
import diffusers
|
45 |
+
from diffusers import (
|
46 |
+
AutoencoderKL,
|
47 |
+
ControlNetModel,
|
48 |
+
DDPMScheduler,
|
49 |
+
StableDiffusionControlNetPipeline,
|
50 |
+
UNet2DConditionModel,
|
51 |
+
UniPCMultistepScheduler,
|
52 |
+
)
|
53 |
+
from diffusers.optimization import get_scheduler
|
54 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
55 |
+
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
56 |
+
from diffusers.utils.import_utils import is_xformers_available
|
57 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
58 |
+
|
59 |
+
|
60 |
+
if is_wandb_available():
|
61 |
+
import wandb
|
62 |
+
|
63 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
64 |
+
check_min_version("0.30.0.dev0")
|
65 |
+
|
66 |
+
logger = get_logger(__name__)
|
67 |
+
|
68 |
+
|
69 |
+
def image_grid(imgs, rows, cols):
|
70 |
+
assert len(imgs) == rows * cols
|
71 |
+
|
72 |
+
w, h = imgs[0].size
|
73 |
+
grid = Image.new("RGB", size=(cols * w, rows * h))
|
74 |
+
|
75 |
+
for i, img in enumerate(imgs):
|
76 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
77 |
+
return grid
|
78 |
+
|
79 |
+
|
80 |
+
def log_validation(
|
81 |
+
vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step, is_final_validation=False
|
82 |
+
):
|
83 |
+
logger.info("Running validation... ")
|
84 |
+
|
85 |
+
if not is_final_validation:
|
86 |
+
controlnet = accelerator.unwrap_model(controlnet)
|
87 |
+
else:
|
88 |
+
controlnet = ControlNetModel.from_pretrained(args.output_dir, torch_dtype=weight_dtype)
|
89 |
+
|
90 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
91 |
+
args.pretrained_model_name_or_path,
|
92 |
+
vae=vae,
|
93 |
+
text_encoder=text_encoder,
|
94 |
+
tokenizer=tokenizer,
|
95 |
+
unet=unet,
|
96 |
+
controlnet=controlnet,
|
97 |
+
safety_checker=None,
|
98 |
+
revision=args.revision,
|
99 |
+
variant=args.variant,
|
100 |
+
torch_dtype=weight_dtype,
|
101 |
+
)
|
102 |
+
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
103 |
+
pipeline = pipeline.to(accelerator.device)
|
104 |
+
pipeline.set_progress_bar_config(disable=True)
|
105 |
+
|
106 |
+
if args.enable_xformers_memory_efficient_attention:
|
107 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
108 |
+
|
109 |
+
if args.seed is None:
|
110 |
+
generator = None
|
111 |
+
else:
|
112 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
113 |
+
|
114 |
+
# if args.validation_image is folder, get all images in the folder
|
115 |
+
if len(args.validation_image) == 1 and os.path.isdir(args.validation_image[0]):
|
116 |
+
logger.info(f"Loading images from {args.validation_image[0]}")
|
117 |
+
dir_path = args.validation_image[0]
|
118 |
+
validation_images = [os.path.join(dir_path, f) for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f))]
|
119 |
+
logger.info(f"Found {len(validation_images)} images")
|
120 |
+
else:
|
121 |
+
validation_images = args.validation_image
|
122 |
+
|
123 |
+
|
124 |
+
if len(validation_images) == len(args.validation_prompt):
|
125 |
+
validation_prompts = args.validation_prompt
|
126 |
+
elif len(validation_images) == 1:
|
127 |
+
validation_images = validation_images * len(args.validation_prompt)
|
128 |
+
validation_prompts = args.validation_prompt
|
129 |
+
elif len(args.validation_prompt) == 1:
|
130 |
+
validation_prompts = args.validation_prompt * len(validation_images)
|
131 |
+
else:
|
132 |
+
raise ValueError(
|
133 |
+
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
|
134 |
+
)
|
135 |
+
|
136 |
+
image_logs = []
|
137 |
+
inference_ctx = contextlib.nullcontext() if is_final_validation else torch.autocast("cuda")
|
138 |
+
|
139 |
+
for validation_prompt, validation_image in zip(validation_prompts, validation_images):
|
140 |
+
validation_image = Image.open(validation_image).convert("RGB")
|
141 |
+
# Resize
|
142 |
+
validation_image = transforms.Resize(args.resolution)(validation_image)
|
143 |
+
|
144 |
+
images = []
|
145 |
+
|
146 |
+
for _ in range(args.num_validation_images):
|
147 |
+
with inference_ctx:
|
148 |
+
image = pipeline(
|
149 |
+
validation_prompt, validation_image, num_inference_steps=20, generator=generator
|
150 |
+
).images[0]
|
151 |
+
|
152 |
+
images.append(image)
|
153 |
+
|
154 |
+
image_logs.append(
|
155 |
+
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
|
156 |
+
)
|
157 |
+
|
158 |
+
tracker_key = "test" if is_final_validation else "validation"
|
159 |
+
for tracker in accelerator.trackers:
|
160 |
+
if tracker.name == "tensorboard":
|
161 |
+
for log in image_logs:
|
162 |
+
images = log["images"]
|
163 |
+
validation_prompt = log["validation_prompt"]
|
164 |
+
validation_image = log["validation_image"]
|
165 |
+
|
166 |
+
formatted_images = []
|
167 |
+
|
168 |
+
formatted_images.append(np.asarray(validation_image))
|
169 |
+
|
170 |
+
for image in images:
|
171 |
+
formatted_images.append(np.asarray(image))
|
172 |
+
|
173 |
+
formatted_images = np.stack(formatted_images)
|
174 |
+
|
175 |
+
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
|
176 |
+
elif tracker.name == "wandb":
|
177 |
+
formatted_images = []
|
178 |
+
|
179 |
+
for log in image_logs:
|
180 |
+
images = log["images"]
|
181 |
+
validation_prompt = log["validation_prompt"]
|
182 |
+
validation_image = log["validation_image"]
|
183 |
+
|
184 |
+
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
|
185 |
+
|
186 |
+
for image in images:
|
187 |
+
image = wandb.Image(image, caption=validation_prompt)
|
188 |
+
formatted_images.append(image)
|
189 |
+
|
190 |
+
tracker.log({tracker_key: formatted_images})
|
191 |
+
else:
|
192 |
+
logger.warning(f"image logging not implemented for {tracker.name}")
|
193 |
+
|
194 |
+
del pipeline
|
195 |
+
gc.collect()
|
196 |
+
torch.cuda.empty_cache()
|
197 |
+
|
198 |
+
return image_logs
|
199 |
+
|
200 |
+
|
201 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
202 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
203 |
+
pretrained_model_name_or_path,
|
204 |
+
subfolder="text_encoder",
|
205 |
+
revision=revision,
|
206 |
+
)
|
207 |
+
model_class = text_encoder_config.architectures[0]
|
208 |
+
|
209 |
+
if model_class == "CLIPTextModel":
|
210 |
+
from transformers import CLIPTextModel
|
211 |
+
|
212 |
+
return CLIPTextModel
|
213 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
214 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
215 |
+
|
216 |
+
return RobertaSeriesModelWithTransformation
|
217 |
+
else:
|
218 |
+
raise ValueError(f"{model_class} is not supported.")
|
219 |
+
|
220 |
+
|
221 |
+
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
|
222 |
+
img_str = ""
|
223 |
+
if image_logs is not None:
|
224 |
+
img_str = "You can find some example images below.\n\n"
|
225 |
+
for i, log in enumerate(image_logs):
|
226 |
+
images = log["images"]
|
227 |
+
validation_prompt = log["validation_prompt"]
|
228 |
+
validation_image = log["validation_image"]
|
229 |
+
validation_image.save(os.path.join(repo_folder, "image_control.png"))
|
230 |
+
img_str += f"prompt: {validation_prompt}\n"
|
231 |
+
images = [validation_image] + images
|
232 |
+
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
|
233 |
+
img_str += f"![images_{i})](./images_{i}.png)\n"
|
234 |
+
|
235 |
+
model_description = f"""
|
236 |
+
# controlnet-{repo_id}
|
237 |
+
|
238 |
+
These are controlnet weights trained on {base_model} with new type of conditioning.
|
239 |
+
{img_str}
|
240 |
+
"""
|
241 |
+
model_card = load_or_create_model_card(
|
242 |
+
repo_id_or_path=repo_id,
|
243 |
+
from_training=True,
|
244 |
+
license="creativeml-openrail-m",
|
245 |
+
base_model=base_model,
|
246 |
+
model_description=model_description,
|
247 |
+
inference=True,
|
248 |
+
)
|
249 |
+
|
250 |
+
tags = [
|
251 |
+
"stable-diffusion",
|
252 |
+
"stable-diffusion-diffusers",
|
253 |
+
"text-to-image",
|
254 |
+
"diffusers",
|
255 |
+
"controlnet",
|
256 |
+
"diffusers-training",
|
257 |
+
]
|
258 |
+
model_card = populate_model_card(model_card, tags=tags)
|
259 |
+
|
260 |
+
model_card.save(os.path.join(repo_folder, "README.md"))
|
261 |
+
|
262 |
+
|
263 |
+
def parse_args(input_args=None):
|
264 |
+
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
|
265 |
+
parser.add_argument(
|
266 |
+
"--pretrained_model_name_or_path",
|
267 |
+
type=str,
|
268 |
+
default=None,
|
269 |
+
required=True,
|
270 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
271 |
+
)
|
272 |
+
parser.add_argument(
|
273 |
+
"--controlnet_model_name_or_path",
|
274 |
+
type=str,
|
275 |
+
default=None,
|
276 |
+
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
|
277 |
+
" If not specified controlnet weights are initialized from unet.",
|
278 |
+
)
|
279 |
+
parser.add_argument(
|
280 |
+
"--revision",
|
281 |
+
type=str,
|
282 |
+
default=None,
|
283 |
+
required=False,
|
284 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
285 |
+
)
|
286 |
+
parser.add_argument(
|
287 |
+
"--variant",
|
288 |
+
type=str,
|
289 |
+
default=None,
|
290 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
291 |
+
)
|
292 |
+
parser.add_argument(
|
293 |
+
"--tokenizer_name",
|
294 |
+
type=str,
|
295 |
+
default=None,
|
296 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
297 |
+
)
|
298 |
+
parser.add_argument(
|
299 |
+
"--output_dir",
|
300 |
+
type=str,
|
301 |
+
default="controlnet-model",
|
302 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
303 |
+
)
|
304 |
+
parser.add_argument(
|
305 |
+
"--cache_dir",
|
306 |
+
type=str,
|
307 |
+
default=None,
|
308 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
309 |
+
)
|
310 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
311 |
+
parser.add_argument(
|
312 |
+
"--resolution",
|
313 |
+
type=int,
|
314 |
+
default=512,
|
315 |
+
help=(
|
316 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
317 |
+
" resolution"
|
318 |
+
),
|
319 |
+
)
|
320 |
+
parser.add_argument(
|
321 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
322 |
+
)
|
323 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
324 |
+
parser.add_argument(
|
325 |
+
"--max_train_steps",
|
326 |
+
type=int,
|
327 |
+
default=None,
|
328 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
329 |
+
)
|
330 |
+
parser.add_argument(
|
331 |
+
"--checkpointing_steps",
|
332 |
+
type=int,
|
333 |
+
default=500,
|
334 |
+
help=(
|
335 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
336 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
337 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
338 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
339 |
+
"instructions."
|
340 |
+
),
|
341 |
+
)
|
342 |
+
parser.add_argument(
|
343 |
+
"--checkpoints_total_limit",
|
344 |
+
type=int,
|
345 |
+
default=None,
|
346 |
+
help=("Max number of checkpoints to store."),
|
347 |
+
)
|
348 |
+
parser.add_argument(
|
349 |
+
"--resume_from_checkpoint",
|
350 |
+
type=str,
|
351 |
+
default=None,
|
352 |
+
help=(
|
353 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
354 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
355 |
+
),
|
356 |
+
)
|
357 |
+
parser.add_argument(
|
358 |
+
"--gradient_accumulation_steps",
|
359 |
+
type=int,
|
360 |
+
default=1,
|
361 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
362 |
+
)
|
363 |
+
parser.add_argument(
|
364 |
+
"--gradient_checkpointing",
|
365 |
+
action="store_true",
|
366 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
367 |
+
)
|
368 |
+
parser.add_argument(
|
369 |
+
"--learning_rate",
|
370 |
+
type=float,
|
371 |
+
default=5e-6,
|
372 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
373 |
+
)
|
374 |
+
parser.add_argument(
|
375 |
+
"--scale_lr",
|
376 |
+
action="store_true",
|
377 |
+
default=False,
|
378 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"--lr_scheduler",
|
382 |
+
type=str,
|
383 |
+
default="constant",
|
384 |
+
help=(
|
385 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
386 |
+
' "constant", "constant_with_warmup"]'
|
387 |
+
),
|
388 |
+
)
|
389 |
+
parser.add_argument(
|
390 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
391 |
+
)
|
392 |
+
parser.add_argument(
|
393 |
+
"--lr_num_cycles",
|
394 |
+
type=int,
|
395 |
+
default=1,
|
396 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
397 |
+
)
|
398 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
399 |
+
parser.add_argument(
|
400 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
401 |
+
)
|
402 |
+
parser.add_argument(
|
403 |
+
"--dataset_num_workers",
|
404 |
+
type=int,
|
405 |
+
default=1,
|
406 |
+
help=(
|
407 |
+
"Number of subprocesses to use for data loading."
|
408 |
+
),
|
409 |
+
)
|
410 |
+
parser.add_argument(
|
411 |
+
"--dataloader_num_workers",
|
412 |
+
type=int,
|
413 |
+
default=0,
|
414 |
+
help=(
|
415 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
416 |
+
),
|
417 |
+
)
|
418 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
419 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
420 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
421 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
422 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
423 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
424 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
425 |
+
parser.add_argument(
|
426 |
+
"--hub_model_id",
|
427 |
+
type=str,
|
428 |
+
default=None,
|
429 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
430 |
+
)
|
431 |
+
parser.add_argument(
|
432 |
+
"--logging_dir",
|
433 |
+
type=str,
|
434 |
+
default="logs",
|
435 |
+
help=(
|
436 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
437 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
438 |
+
),
|
439 |
+
)
|
440 |
+
parser.add_argument(
|
441 |
+
"--allow_tf32",
|
442 |
+
action="store_true",
|
443 |
+
help=(
|
444 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
445 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
446 |
+
),
|
447 |
+
)
|
448 |
+
parser.add_argument(
|
449 |
+
"--report_to",
|
450 |
+
type=str,
|
451 |
+
default="tensorboard",
|
452 |
+
help=(
|
453 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
454 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
455 |
+
),
|
456 |
+
)
|
457 |
+
parser.add_argument(
|
458 |
+
"--mixed_precision",
|
459 |
+
type=str,
|
460 |
+
default=None,
|
461 |
+
choices=["no", "fp16", "bf16"],
|
462 |
+
help=(
|
463 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
464 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
465 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
466 |
+
),
|
467 |
+
)
|
468 |
+
parser.add_argument(
|
469 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
470 |
+
)
|
471 |
+
parser.add_argument(
|
472 |
+
"--set_grads_to_none",
|
473 |
+
action="store_true",
|
474 |
+
help=(
|
475 |
+
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
|
476 |
+
" behaviors, so disable this argument if it causes any problems. More info:"
|
477 |
+
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
|
478 |
+
),
|
479 |
+
)
|
480 |
+
parser.add_argument(
|
481 |
+
"--dataset_name",
|
482 |
+
type=str,
|
483 |
+
default=None,
|
484 |
+
help=(
|
485 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
486 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
487 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
488 |
+
),
|
489 |
+
)
|
490 |
+
parser.add_argument(
|
491 |
+
"--dataset_config_name",
|
492 |
+
type=str,
|
493 |
+
default=None,
|
494 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
495 |
+
)
|
496 |
+
parser.add_argument(
|
497 |
+
"--train_data_dir",
|
498 |
+
type=str,
|
499 |
+
default=None,
|
500 |
+
help=(
|
501 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
502 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
503 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
504 |
+
),
|
505 |
+
)
|
506 |
+
parser.add_argument(
|
507 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing the target image."
|
508 |
+
)
|
509 |
+
parser.add_argument(
|
510 |
+
"--conditioning_image_column",
|
511 |
+
type=str,
|
512 |
+
default="conditioning_image",
|
513 |
+
help="The column of the dataset containing the controlnet conditioning image.",
|
514 |
+
)
|
515 |
+
parser.add_argument(
|
516 |
+
"--caption_column",
|
517 |
+
type=str,
|
518 |
+
default="text",
|
519 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
520 |
+
)
|
521 |
+
parser.add_argument(
|
522 |
+
"--max_train_samples",
|
523 |
+
type=int,
|
524 |
+
default=None,
|
525 |
+
help=(
|
526 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
527 |
+
"value if set."
|
528 |
+
),
|
529 |
+
)
|
530 |
+
parser.add_argument(
|
531 |
+
"--proportion_empty_prompts",
|
532 |
+
type=float,
|
533 |
+
default=0,
|
534 |
+
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
|
535 |
+
)
|
536 |
+
parser.add_argument(
|
537 |
+
"--validation_prompt",
|
538 |
+
type=str,
|
539 |
+
default=None,
|
540 |
+
nargs="+",
|
541 |
+
help=(
|
542 |
+
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
543 |
+
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
544 |
+
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
545 |
+
),
|
546 |
+
)
|
547 |
+
parser.add_argument(
|
548 |
+
"--validation_image",
|
549 |
+
type=str,
|
550 |
+
default=None,
|
551 |
+
nargs="+",
|
552 |
+
help=(
|
553 |
+
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
|
554 |
+
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
|
555 |
+
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
|
556 |
+
" `--validation_image` that will be used with all `--validation_prompt`s."
|
557 |
+
),
|
558 |
+
)
|
559 |
+
parser.add_argument(
|
560 |
+
"--num_validation_images",
|
561 |
+
type=int,
|
562 |
+
default=4,
|
563 |
+
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
|
564 |
+
)
|
565 |
+
parser.add_argument(
|
566 |
+
"--validation_steps",
|
567 |
+
type=int,
|
568 |
+
default=100,
|
569 |
+
help=(
|
570 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
571 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
572 |
+
" and logging the images."
|
573 |
+
),
|
574 |
+
)
|
575 |
+
parser.add_argument(
|
576 |
+
"--tracker_project_name",
|
577 |
+
type=str,
|
578 |
+
default="train_controlnet",
|
579 |
+
help=(
|
580 |
+
"The `project_name` argument passed to Accelerator.init_trackers for"
|
581 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
582 |
+
),
|
583 |
+
)
|
584 |
+
parser.add_argument(
|
585 |
+
"--tracker_run_name",
|
586 |
+
type=str,
|
587 |
+
default=None,
|
588 |
+
help=(
|
589 |
+
"The `run_name` argument passed to Accelerator.init_trackers for"
|
590 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
591 |
+
),
|
592 |
+
)
|
593 |
+
|
594 |
+
if input_args is not None:
|
595 |
+
args = parser.parse_args(input_args)
|
596 |
+
else:
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
if args.dataset_name is None and args.train_data_dir is None:
|
600 |
+
raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")
|
601 |
+
|
602 |
+
if args.dataset_name is not None and args.train_data_dir is not None:
|
603 |
+
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")
|
604 |
+
|
605 |
+
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
|
606 |
+
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
|
607 |
+
|
608 |
+
if args.validation_prompt is not None and args.validation_image is None:
|
609 |
+
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
|
610 |
+
|
611 |
+
if args.validation_prompt is None and args.validation_image is not None:
|
612 |
+
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
|
613 |
+
|
614 |
+
if (
|
615 |
+
args.validation_image is not None
|
616 |
+
and args.validation_prompt is not None
|
617 |
+
and len(args.validation_image) != 1
|
618 |
+
and len(args.validation_prompt) != 1
|
619 |
+
and len(args.validation_image) != len(args.validation_prompt)
|
620 |
+
):
|
621 |
+
raise ValueError(
|
622 |
+
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
|
623 |
+
" or the same number of `--validation_prompt`s and `--validation_image`s"
|
624 |
+
)
|
625 |
+
|
626 |
+
if args.resolution % 8 != 0:
|
627 |
+
raise ValueError(
|
628 |
+
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
|
629 |
+
)
|
630 |
+
|
631 |
+
return args
|
632 |
+
|
633 |
+
def preprocess_train(examples, image_column, conditioning_image_column, image_transforms, conditioning_image_transforms, tokenize_caption):
|
634 |
+
images = [image.convert("RGB") for image in examples[image_column]]
|
635 |
+
images = [image_transforms(image) for image in images]
|
636 |
+
|
637 |
+
conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]
|
638 |
+
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
|
639 |
+
|
640 |
+
examples["pixel_values"] = images
|
641 |
+
examples["conditioning_pixel_values"] = conditioning_images
|
642 |
+
examples["input_ids"] = tokenize_caption
|
643 |
+
|
644 |
+
return examples
|
645 |
+
|
646 |
+
def make_train_dataset(args, tokenizer, accelerator):
|
647 |
+
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
648 |
+
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
649 |
+
|
650 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
651 |
+
# download the dataset.
|
652 |
+
if args.dataset_name is not None:
|
653 |
+
# Downloading and loading a dataset from the hub.
|
654 |
+
dataset = load_dataset(
|
655 |
+
args.dataset_name,
|
656 |
+
args.dataset_config_name,
|
657 |
+
cache_dir=args.cache_dir,
|
658 |
+
)
|
659 |
+
else:
|
660 |
+
# Get train_data_dir's last folder name
|
661 |
+
if args.train_data_dir is not None:
|
662 |
+
# For optimal performance
|
663 |
+
dataset = load_dataset(
|
664 |
+
args.train_data_dir,
|
665 |
+
cache_dir=args.cache_dir,
|
666 |
+
num_proc=args.dataset_num_workers,
|
667 |
+
# streaming=True,
|
668 |
+
trust_remote_code=True,
|
669 |
+
)
|
670 |
+
|
671 |
+
# See more about loading custom images at
|
672 |
+
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
|
673 |
+
|
674 |
+
# Preprocessing the datasets.
|
675 |
+
# We need to tokenize inputs and targets.
|
676 |
+
column_names = dataset["train"].column_names
|
677 |
+
|
678 |
+
# 6. Get the column names for input/target.
|
679 |
+
if args.image_column is None:
|
680 |
+
image_column = column_names[0]
|
681 |
+
logger.info(f"image column defaulting to {image_column}")
|
682 |
+
else:
|
683 |
+
image_column = args.image_column
|
684 |
+
if image_column not in column_names:
|
685 |
+
raise ValueError(
|
686 |
+
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
687 |
+
)
|
688 |
+
|
689 |
+
if args.caption_column is None:
|
690 |
+
caption_column = column_names[1]
|
691 |
+
logger.info(f"caption column defaulting to {caption_column}")
|
692 |
+
else:
|
693 |
+
caption_column = args.caption_column
|
694 |
+
if caption_column not in column_names:
|
695 |
+
raise ValueError(
|
696 |
+
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
697 |
+
)
|
698 |
+
|
699 |
+
if args.conditioning_image_column is None:
|
700 |
+
conditioning_image_column = column_names[2]
|
701 |
+
logger.info(f"conditioning image column defaulting to {conditioning_image_column}")
|
702 |
+
else:
|
703 |
+
conditioning_image_column = args.conditioning_image_column
|
704 |
+
if conditioning_image_column not in column_names:
|
705 |
+
raise ValueError(
|
706 |
+
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
707 |
+
)
|
708 |
+
|
709 |
+
def tokenize_captions(examples, is_train=True):
|
710 |
+
captions = []
|
711 |
+
for caption in examples[caption_column]:
|
712 |
+
if random.random() < args.proportion_empty_prompts:
|
713 |
+
captions.append("")
|
714 |
+
elif isinstance(caption, str):
|
715 |
+
captions.append(caption)
|
716 |
+
elif isinstance(caption, (list, np.ndarray)):
|
717 |
+
# take a random caption if there are multiple
|
718 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
719 |
+
else:
|
720 |
+
raise ValueError(
|
721 |
+
f"Caption column `{caption_column}` should contain either strings or lists of strings."
|
722 |
+
)
|
723 |
+
inputs = tokenizer(
|
724 |
+
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
725 |
+
)
|
726 |
+
return inputs.input_ids
|
727 |
+
|
728 |
+
# Tokenize captions
|
729 |
+
# tokenize_caption = tokenizer(
|
730 |
+
# [""], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
731 |
+
# ).input_ids
|
732 |
+
|
733 |
+
image_transforms = transforms.Compose(
|
734 |
+
[
|
735 |
+
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
736 |
+
transforms.CenterCrop(args.resolution),
|
737 |
+
transforms.ToTensor(),
|
738 |
+
transforms.Normalize([0.5], [0.5]),
|
739 |
+
]
|
740 |
+
)
|
741 |
+
|
742 |
+
conditioning_image_transforms = transforms.Compose(
|
743 |
+
[
|
744 |
+
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
745 |
+
transforms.CenterCrop(args.resolution),
|
746 |
+
transforms.ToTensor(),
|
747 |
+
]
|
748 |
+
)
|
749 |
+
|
750 |
+
batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
751 |
+
tokenize_caption = tokenizer(
|
752 |
+
[""] * batch_size, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
753 |
+
).input_ids
|
754 |
+
|
755 |
+
with accelerator.main_process_first():
|
756 |
+
if args.max_train_samples is not None:
|
757 |
+
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
758 |
+
# Set the training transforms
|
759 |
+
logger.info("Applying preprocessing to the training dataset...")
|
760 |
+
train_dataset = dataset["train"].with_transform(partial(preprocess_train, image_column=image_column, conditioning_image_column=conditioning_image_column, image_transforms=image_transforms, conditioning_image_transforms=conditioning_image_transforms, tokenize_caption=tokenize_caption))
|
761 |
+
logger.info("Preprocessing applied to the training dataset.")
|
762 |
+
|
763 |
+
return train_dataset
|
764 |
+
|
765 |
+
|
766 |
+
def collate_fn(examples):
|
767 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
768 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
769 |
+
|
770 |
+
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
|
771 |
+
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()
|
772 |
+
|
773 |
+
input_ids = torch.stack([example["input_ids"] for example in examples])
|
774 |
+
|
775 |
+
return {
|
776 |
+
"pixel_values": pixel_values,
|
777 |
+
"conditioning_pixel_values": conditioning_pixel_values,
|
778 |
+
"input_ids": input_ids,
|
779 |
+
}
|
780 |
+
|
781 |
+
|
782 |
+
def main(args):
|
783 |
+
if args.report_to == "wandb" and args.hub_token is not None:
|
784 |
+
raise ValueError(
|
785 |
+
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
786 |
+
" Please use `huggingface-cli login` to authenticate with the Hub."
|
787 |
+
)
|
788 |
+
os.environ["WANDB__SERVICE_WAIT"] = "300"
|
789 |
+
|
790 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
791 |
+
|
792 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
793 |
+
|
794 |
+
accelerator = Accelerator(
|
795 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
796 |
+
mixed_precision=args.mixed_precision,
|
797 |
+
log_with=args.report_to,
|
798 |
+
project_config=accelerator_project_config,
|
799 |
+
)
|
800 |
+
|
801 |
+
# Disable AMP for MPS.
|
802 |
+
if torch.backends.mps.is_available():
|
803 |
+
accelerator.native_amp = False
|
804 |
+
|
805 |
+
# Make one log on every process with the configuration for debugging.
|
806 |
+
logging.basicConfig(
|
807 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
808 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
809 |
+
level=logging.INFO,
|
810 |
+
)
|
811 |
+
logger.info(accelerator.state, main_process_only=False)
|
812 |
+
logger.info(f"Training/evaluation parameters {args}")
|
813 |
+
if accelerator.is_local_main_process:
|
814 |
+
transformers.utils.logging.set_verbosity_warning()
|
815 |
+
diffusers.utils.logging.set_verbosity_info()
|
816 |
+
else:
|
817 |
+
transformers.utils.logging.set_verbosity_error()
|
818 |
+
diffusers.utils.logging.set_verbosity_error()
|
819 |
+
|
820 |
+
# If passed along, set the training seed now.
|
821 |
+
if args.seed is not None:
|
822 |
+
set_seed(args.seed)
|
823 |
+
|
824 |
+
# Handle the repository creation
|
825 |
+
if accelerator.is_main_process:
|
826 |
+
if args.output_dir is not None:
|
827 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
828 |
+
|
829 |
+
if args.push_to_hub:
|
830 |
+
repo_id = create_repo(
|
831 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
832 |
+
).repo_id
|
833 |
+
|
834 |
+
# Load the tokenizer
|
835 |
+
if args.tokenizer_name:
|
836 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
837 |
+
elif args.pretrained_model_name_or_path:
|
838 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
839 |
+
args.pretrained_model_name_or_path,
|
840 |
+
subfolder="tokenizer",
|
841 |
+
revision=args.revision,
|
842 |
+
use_fast=False,
|
843 |
+
)
|
844 |
+
|
845 |
+
# import correct text encoder class
|
846 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
847 |
+
|
848 |
+
# Load scheduler and models
|
849 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
850 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
851 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
852 |
+
)
|
853 |
+
vae = AutoencoderKL.from_pretrained(
|
854 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
|
855 |
+
)
|
856 |
+
unet = UNet2DConditionModel.from_pretrained(
|
857 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
|
858 |
+
)
|
859 |
+
|
860 |
+
if args.controlnet_model_name_or_path:
|
861 |
+
logger.info("Loading existing controlnet weights")
|
862 |
+
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path)
|
863 |
+
else:
|
864 |
+
logger.info("Initializing controlnet weights from unet")
|
865 |
+
controlnet = ControlNetModel.from_unet(unet)
|
866 |
+
|
867 |
+
# Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files)
|
868 |
+
def unwrap_model(model):
|
869 |
+
model = accelerator.unwrap_model(model)
|
870 |
+
model = model._orig_mod if is_compiled_module(model) else model
|
871 |
+
return model
|
872 |
+
|
873 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
874 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
875 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
876 |
+
def save_model_hook(models, weights, output_dir):
|
877 |
+
if accelerator.is_main_process:
|
878 |
+
i = len(weights) - 1
|
879 |
+
|
880 |
+
while len(weights) > 0:
|
881 |
+
weights.pop()
|
882 |
+
model = models[i]
|
883 |
+
|
884 |
+
sub_dir = "controlnet"
|
885 |
+
model.save_pretrained(os.path.join(output_dir, sub_dir))
|
886 |
+
|
887 |
+
i -= 1
|
888 |
+
|
889 |
+
def load_model_hook(models, input_dir):
|
890 |
+
while len(models) > 0:
|
891 |
+
# pop models so that they are not loaded again
|
892 |
+
model = models.pop()
|
893 |
+
|
894 |
+
# load diffusers style into model
|
895 |
+
load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet")
|
896 |
+
model.register_to_config(**load_model.config)
|
897 |
+
|
898 |
+
model.load_state_dict(load_model.state_dict())
|
899 |
+
del load_model
|
900 |
+
|
901 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
902 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
903 |
+
|
904 |
+
vae.requires_grad_(False)
|
905 |
+
unet.requires_grad_(False)
|
906 |
+
text_encoder.requires_grad_(False)
|
907 |
+
controlnet.train()
|
908 |
+
|
909 |
+
if args.enable_xformers_memory_efficient_attention:
|
910 |
+
if is_xformers_available():
|
911 |
+
import xformers
|
912 |
+
|
913 |
+
xformers_version = version.parse(xformers.__version__)
|
914 |
+
if xformers_version == version.parse("0.0.16"):
|
915 |
+
logger.warning(
|
916 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
917 |
+
)
|
918 |
+
unet.enable_xformers_memory_efficient_attention()
|
919 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
920 |
+
else:
|
921 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
922 |
+
|
923 |
+
if args.gradient_checkpointing:
|
924 |
+
controlnet.enable_gradient_checkpointing()
|
925 |
+
|
926 |
+
# Check that all trainable models are in full precision
|
927 |
+
low_precision_error_string = (
|
928 |
+
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
|
929 |
+
" doing mixed precision training, copy of the weights should still be float32."
|
930 |
+
)
|
931 |
+
|
932 |
+
if unwrap_model(controlnet).dtype != torch.float32:
|
933 |
+
raise ValueError(
|
934 |
+
f"Controlnet loaded as datatype {unwrap_model(controlnet).dtype}. {low_precision_error_string}"
|
935 |
+
)
|
936 |
+
|
937 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
938 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
939 |
+
if args.allow_tf32:
|
940 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
941 |
+
|
942 |
+
if args.scale_lr:
|
943 |
+
args.learning_rate = (
|
944 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
945 |
+
)
|
946 |
+
|
947 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
948 |
+
if args.use_8bit_adam:
|
949 |
+
try:
|
950 |
+
import bitsandbytes as bnb
|
951 |
+
except ImportError:
|
952 |
+
raise ImportError(
|
953 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
954 |
+
)
|
955 |
+
|
956 |
+
optimizer_class = bnb.optim.AdamW8bit
|
957 |
+
else:
|
958 |
+
optimizer_class = torch.optim.AdamW
|
959 |
+
|
960 |
+
# Optimizer creation
|
961 |
+
params_to_optimize = controlnet.parameters()
|
962 |
+
optimizer = optimizer_class(
|
963 |
+
params_to_optimize,
|
964 |
+
lr=args.learning_rate,
|
965 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
966 |
+
weight_decay=args.adam_weight_decay,
|
967 |
+
eps=args.adam_epsilon,
|
968 |
+
)
|
969 |
+
|
970 |
+
logger.info("Loading the training dataset")
|
971 |
+
train_dataset = make_train_dataset(args, tokenizer, accelerator)
|
972 |
+
|
973 |
+
logger.info("Creating the training dataloader")
|
974 |
+
train_dataloader = torch.utils.data.DataLoader(
|
975 |
+
train_dataset,
|
976 |
+
shuffle=False,
|
977 |
+
collate_fn=collate_fn,
|
978 |
+
batch_size=args.train_batch_size,
|
979 |
+
num_workers=args.dataloader_num_workers,
|
980 |
+
)
|
981 |
+
|
982 |
+
# Scheduler and math around the number of training steps.
|
983 |
+
overrode_max_train_steps = False
|
984 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
985 |
+
if args.max_train_steps is None:
|
986 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
987 |
+
overrode_max_train_steps = True
|
988 |
+
|
989 |
+
lr_scheduler = get_scheduler(
|
990 |
+
args.lr_scheduler,
|
991 |
+
optimizer=optimizer,
|
992 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
993 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
994 |
+
num_cycles=args.lr_num_cycles,
|
995 |
+
power=args.lr_power,
|
996 |
+
)
|
997 |
+
|
998 |
+
# Prepare everything with our `accelerator`.
|
999 |
+
controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1000 |
+
controlnet, optimizer, train_dataloader, lr_scheduler
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
1004 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
1005 |
+
weight_dtype = torch.float32
|
1006 |
+
if accelerator.mixed_precision == "fp16":
|
1007 |
+
weight_dtype = torch.float16
|
1008 |
+
elif accelerator.mixed_precision == "bf16":
|
1009 |
+
weight_dtype = torch.bfloat16
|
1010 |
+
|
1011 |
+
# Move vae, unet and text_encoder to device and cast to weight_dtype
|
1012 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
1013 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
1014 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
1015 |
+
|
1016 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
1017 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1018 |
+
if overrode_max_train_steps:
|
1019 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1020 |
+
# Afterwards we recalculate our number of training epochs
|
1021 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
1022 |
+
|
1023 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
1024 |
+
# The trackers initializes automatically on the main process.
|
1025 |
+
if accelerator.is_main_process:
|
1026 |
+
tracker_config = dict(vars(args))
|
1027 |
+
|
1028 |
+
# tensorboard cannot handle list types for config
|
1029 |
+
tracker_config.pop("validation_prompt")
|
1030 |
+
tracker_config.pop("validation_image")
|
1031 |
+
|
1032 |
+
logger.info(f"Init trackers: {args.tracker_project_name}")
|
1033 |
+
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
|
1034 |
+
# if args.tracker_run_name is not None:
|
1035 |
+
# accelerator.trackers[-1].run.name = args.tracker_run_name
|
1036 |
+
|
1037 |
+
# Train!
|
1038 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
1039 |
+
|
1040 |
+
logger.info("***** Running training *****")
|
1041 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
1042 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
1043 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
1044 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
1045 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
1046 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
1047 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
1048 |
+
global_step = 0
|
1049 |
+
first_epoch = 0
|
1050 |
+
|
1051 |
+
# Potentially load in the weights and states from a previous save
|
1052 |
+
if args.resume_from_checkpoint:
|
1053 |
+
if args.resume_from_checkpoint != "latest":
|
1054 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1055 |
+
else:
|
1056 |
+
# Get the most recent checkpoint
|
1057 |
+
dirs = os.listdir(args.output_dir)
|
1058 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1059 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1060 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1061 |
+
|
1062 |
+
if path is None:
|
1063 |
+
accelerator.print(
|
1064 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1065 |
+
)
|
1066 |
+
args.resume_from_checkpoint = None
|
1067 |
+
initial_global_step = 0
|
1068 |
+
else:
|
1069 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1070 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1071 |
+
global_step = int(path.split("-")[1])
|
1072 |
+
|
1073 |
+
initial_global_step = global_step
|
1074 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
1075 |
+
else:
|
1076 |
+
initial_global_step = 0
|
1077 |
+
|
1078 |
+
progress_bar = tqdm(
|
1079 |
+
range(0, args.max_train_steps),
|
1080 |
+
initial=initial_global_step,
|
1081 |
+
desc="Steps",
|
1082 |
+
# Only show the progress bar once on each machine.
|
1083 |
+
disable=not accelerator.is_local_main_process,
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
image_logs = None
|
1087 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
1088 |
+
for step, batch in enumerate(train_dataloader):
|
1089 |
+
with accelerator.accumulate(controlnet):
|
1090 |
+
# Convert images to latent space
|
1091 |
+
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
1092 |
+
latents = latents * vae.config.scaling_factor
|
1093 |
+
|
1094 |
+
# Sample noise that we'll add to the latents
|
1095 |
+
noise = torch.randn_like(latents)
|
1096 |
+
bsz = latents.shape[0]
|
1097 |
+
# Sample a random timestep for each image
|
1098 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
1099 |
+
timesteps = timesteps.long()
|
1100 |
+
|
1101 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
1102 |
+
# (this is the forward diffusion process)
|
1103 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
1104 |
+
|
1105 |
+
# Get the text embedding for conditioning
|
1106 |
+
encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0]
|
1107 |
+
|
1108 |
+
controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)
|
1109 |
+
|
1110 |
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1111 |
+
noisy_latents,
|
1112 |
+
timesteps,
|
1113 |
+
encoder_hidden_states=encoder_hidden_states,
|
1114 |
+
controlnet_cond=controlnet_image,
|
1115 |
+
return_dict=False,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
# Predict the noise residual
|
1119 |
+
model_pred = unet(
|
1120 |
+
noisy_latents,
|
1121 |
+
timesteps,
|
1122 |
+
encoder_hidden_states=encoder_hidden_states,
|
1123 |
+
down_block_additional_residuals=[
|
1124 |
+
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
1125 |
+
],
|
1126 |
+
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
|
1127 |
+
return_dict=False,
|
1128 |
+
)[0]
|
1129 |
+
|
1130 |
+
# Get the target for loss depending on the prediction type
|
1131 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1132 |
+
target = noise
|
1133 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1134 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
1135 |
+
else:
|
1136 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1137 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1138 |
+
|
1139 |
+
accelerator.backward(loss)
|
1140 |
+
if accelerator.sync_gradients:
|
1141 |
+
params_to_clip = controlnet.parameters()
|
1142 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1143 |
+
optimizer.step()
|
1144 |
+
lr_scheduler.step()
|
1145 |
+
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
|
1146 |
+
|
1147 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1148 |
+
if accelerator.sync_gradients:
|
1149 |
+
progress_bar.update(1)
|
1150 |
+
global_step += 1
|
1151 |
+
|
1152 |
+
if accelerator.is_main_process:
|
1153 |
+
if global_step % args.checkpointing_steps == 0:
|
1154 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1155 |
+
if args.checkpoints_total_limit is not None:
|
1156 |
+
checkpoints = os.listdir(args.output_dir)
|
1157 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1158 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1159 |
+
|
1160 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1161 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1162 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1163 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1164 |
+
|
1165 |
+
logger.info(
|
1166 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1167 |
+
)
|
1168 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1169 |
+
|
1170 |
+
for removing_checkpoint in removing_checkpoints:
|
1171 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1172 |
+
shutil.rmtree(removing_checkpoint)
|
1173 |
+
|
1174 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1175 |
+
accelerator.save_state(save_path)
|
1176 |
+
logger.info(f"Saved state to {save_path}")
|
1177 |
+
|
1178 |
+
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
|
1179 |
+
image_logs = log_validation(
|
1180 |
+
vae,
|
1181 |
+
text_encoder,
|
1182 |
+
tokenizer,
|
1183 |
+
unet,
|
1184 |
+
controlnet,
|
1185 |
+
args,
|
1186 |
+
accelerator,
|
1187 |
+
weight_dtype,
|
1188 |
+
global_step,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1192 |
+
progress_bar.set_postfix(**logs)
|
1193 |
+
accelerator.log(logs, step=global_step)
|
1194 |
+
|
1195 |
+
if global_step >= args.max_train_steps:
|
1196 |
+
break
|
1197 |
+
|
1198 |
+
# Create the pipeline using using the trained modules and save it.
|
1199 |
+
accelerator.wait_for_everyone()
|
1200 |
+
if accelerator.is_main_process:
|
1201 |
+
controlnet = unwrap_model(controlnet)
|
1202 |
+
controlnet.save_pretrained(args.output_dir)
|
1203 |
+
|
1204 |
+
# Run a final round of validation.
|
1205 |
+
image_logs = None
|
1206 |
+
if args.validation_prompt is not None:
|
1207 |
+
image_logs = log_validation(
|
1208 |
+
vae=vae,
|
1209 |
+
text_encoder=text_encoder,
|
1210 |
+
tokenizer=tokenizer,
|
1211 |
+
unet=unet,
|
1212 |
+
controlnet=None,
|
1213 |
+
args=args,
|
1214 |
+
accelerator=accelerator,
|
1215 |
+
weight_dtype=weight_dtype,
|
1216 |
+
step=global_step,
|
1217 |
+
is_final_validation=True,
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
if args.push_to_hub:
|
1221 |
+
save_model_card(
|
1222 |
+
repo_id,
|
1223 |
+
image_logs=image_logs,
|
1224 |
+
base_model=args.pretrained_model_name_or_path,
|
1225 |
+
repo_folder=args.output_dir,
|
1226 |
+
)
|
1227 |
+
upload_folder(
|
1228 |
+
repo_id=repo_id,
|
1229 |
+
folder_path=args.output_dir,
|
1230 |
+
commit_message="End of training",
|
1231 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
accelerator.end_training()
|
1235 |
+
|
1236 |
+
|
1237 |
+
if __name__ == "__main__":
|
1238 |
+
args = parse_args()
|
1239 |
+
main(args)
|
train_multi_open.py
ADDED
@@ -0,0 +1,1192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import contextlib
|
18 |
+
import gc
|
19 |
+
import logging
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
import random
|
23 |
+
import shutil
|
24 |
+
from pathlib import Path
|
25 |
+
|
26 |
+
import accelerate
|
27 |
+
import numpy as np
|
28 |
+
import torch
|
29 |
+
import torch.nn.functional as F
|
30 |
+
import torch.utils.checkpoint
|
31 |
+
import transformers
|
32 |
+
from accelerate import Accelerator
|
33 |
+
from accelerate.logging import get_logger
|
34 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
35 |
+
from datasets import load_dataset, Features, Value, Image, IterableDataset
|
36 |
+
from datasets.iterable_dataset import ExamplesIterable
|
37 |
+
from torch.utils.data import get_worker_info
|
38 |
+
from multiprocessing import Pool, Queue, cpu_count
|
39 |
+
from threading import Thread
|
40 |
+
from itertools import cycle
|
41 |
+
from huggingface_hub import create_repo, upload_folder
|
42 |
+
from packaging import version
|
43 |
+
from PIL import Image
|
44 |
+
from torchvision import transforms
|
45 |
+
from tqdm.auto import tqdm
|
46 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
47 |
+
|
48 |
+
import diffusers
|
49 |
+
from diffusers import (
|
50 |
+
AutoencoderKL,
|
51 |
+
ControlNetModel,
|
52 |
+
DDPMScheduler,
|
53 |
+
StableDiffusionControlNetPipeline,
|
54 |
+
UNet2DConditionModel,
|
55 |
+
UniPCMultistepScheduler,
|
56 |
+
)
|
57 |
+
from diffusers.optimization import get_scheduler
|
58 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
59 |
+
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
60 |
+
from diffusers.utils.import_utils import is_xformers_available
|
61 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
62 |
+
|
63 |
+
|
64 |
+
if is_wandb_available():
|
65 |
+
import wandb
|
66 |
+
|
67 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
68 |
+
check_min_version("0.30.0.dev0")
|
69 |
+
|
70 |
+
logger = get_logger(__name__)
|
71 |
+
|
72 |
+
|
73 |
+
def image_grid(imgs, rows, cols):
|
74 |
+
assert len(imgs) == rows * cols
|
75 |
+
|
76 |
+
w, h = imgs[0].size
|
77 |
+
grid = Image.new("RGB", size=(cols * w, rows * h))
|
78 |
+
|
79 |
+
for i, img in enumerate(imgs):
|
80 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
81 |
+
return grid
|
82 |
+
|
83 |
+
|
84 |
+
def log_validation(
|
85 |
+
vae, text_encoder, tokenizer, unet, controlnet, args, accelerator, weight_dtype, step, is_final_validation=False
|
86 |
+
):
|
87 |
+
logger.info("Running validation... ")
|
88 |
+
|
89 |
+
if not is_final_validation:
|
90 |
+
controlnet = accelerator.unwrap_model(controlnet)
|
91 |
+
else:
|
92 |
+
controlnet = ControlNetModel.from_pretrained(args.output_dir, torch_dtype=weight_dtype)
|
93 |
+
|
94 |
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
95 |
+
args.pretrained_model_name_or_path,
|
96 |
+
vae=vae,
|
97 |
+
text_encoder=text_encoder,
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
unet=unet,
|
100 |
+
controlnet=controlnet,
|
101 |
+
safety_checker=None,
|
102 |
+
revision=args.revision,
|
103 |
+
variant=args.variant,
|
104 |
+
torch_dtype=weight_dtype,
|
105 |
+
)
|
106 |
+
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
107 |
+
pipeline = pipeline.to(accelerator.device)
|
108 |
+
pipeline.set_progress_bar_config(disable=True)
|
109 |
+
|
110 |
+
if args.enable_xformers_memory_efficient_attention:
|
111 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
112 |
+
|
113 |
+
if args.seed is None:
|
114 |
+
generator = None
|
115 |
+
else:
|
116 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
117 |
+
|
118 |
+
# if args.validation_image is folder, get all images in the folder
|
119 |
+
if len(args.validation_image) == 1 and os.path.isdir(args.validation_image[0]):
|
120 |
+
logger.info(f"Loading images from {args.validation_image[0]}")
|
121 |
+
dir_path = args.validation_image[0]
|
122 |
+
validation_images = [os.path.join(dir_path, f) for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f))]
|
123 |
+
logger.info(f"Found {len(validation_images)} images")
|
124 |
+
else:
|
125 |
+
validation_images = args.validation_image
|
126 |
+
|
127 |
+
|
128 |
+
if len(validation_images) == len(args.validation_prompt):
|
129 |
+
validation_prompts = args.validation_prompt
|
130 |
+
elif len(validation_images) == 1:
|
131 |
+
validation_images = validation_images * len(args.validation_prompt)
|
132 |
+
validation_prompts = args.validation_prompt
|
133 |
+
elif len(args.validation_prompt) == 1:
|
134 |
+
validation_prompts = args.validation_prompt * len(validation_images)
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
|
138 |
+
)
|
139 |
+
|
140 |
+
image_logs = []
|
141 |
+
inference_ctx = contextlib.nullcontext() if is_final_validation else torch.autocast("cuda")
|
142 |
+
|
143 |
+
for validation_prompt, validation_image in zip(validation_prompts, validation_images):
|
144 |
+
validation_image = Image.open(validation_image).convert("RGB")
|
145 |
+
# Resize
|
146 |
+
validation_image = transforms.Resize(args.resolution)(validation_image)
|
147 |
+
|
148 |
+
images = []
|
149 |
+
|
150 |
+
for _ in range(args.num_validation_images):
|
151 |
+
with inference_ctx:
|
152 |
+
image = pipeline(
|
153 |
+
validation_prompt, validation_image, num_inference_steps=20, generator=generator
|
154 |
+
).images[0]
|
155 |
+
|
156 |
+
images.append(image)
|
157 |
+
|
158 |
+
image_logs.append(
|
159 |
+
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
|
160 |
+
)
|
161 |
+
|
162 |
+
tracker_key = "test" if is_final_validation else "validation"
|
163 |
+
for tracker in accelerator.trackers:
|
164 |
+
if tracker.name == "tensorboard":
|
165 |
+
for log in image_logs:
|
166 |
+
images = log["images"]
|
167 |
+
validation_prompt = log["validation_prompt"]
|
168 |
+
validation_image = log["validation_image"]
|
169 |
+
|
170 |
+
formatted_images = []
|
171 |
+
|
172 |
+
formatted_images.append(np.asarray(validation_image))
|
173 |
+
|
174 |
+
for image in images:
|
175 |
+
formatted_images.append(np.asarray(image))
|
176 |
+
|
177 |
+
formatted_images = np.stack(formatted_images)
|
178 |
+
|
179 |
+
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
|
180 |
+
elif tracker.name == "wandb":
|
181 |
+
formatted_images = []
|
182 |
+
|
183 |
+
for log in image_logs:
|
184 |
+
images = log["images"]
|
185 |
+
validation_prompt = log["validation_prompt"]
|
186 |
+
validation_image = log["validation_image"]
|
187 |
+
|
188 |
+
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
|
189 |
+
|
190 |
+
for image in images:
|
191 |
+
image = wandb.Image(image, caption=validation_prompt)
|
192 |
+
formatted_images.append(image)
|
193 |
+
|
194 |
+
tracker.log({tracker_key: formatted_images})
|
195 |
+
else:
|
196 |
+
logger.warning(f"image logging not implemented for {tracker.name}")
|
197 |
+
|
198 |
+
del pipeline
|
199 |
+
gc.collect()
|
200 |
+
torch.cuda.empty_cache()
|
201 |
+
|
202 |
+
return image_logs
|
203 |
+
|
204 |
+
|
205 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
206 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
207 |
+
pretrained_model_name_or_path,
|
208 |
+
subfolder="text_encoder",
|
209 |
+
revision=revision,
|
210 |
+
)
|
211 |
+
model_class = text_encoder_config.architectures[0]
|
212 |
+
|
213 |
+
if model_class == "CLIPTextModel":
|
214 |
+
from transformers import CLIPTextModel
|
215 |
+
|
216 |
+
return CLIPTextModel
|
217 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
218 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
219 |
+
|
220 |
+
return RobertaSeriesModelWithTransformation
|
221 |
+
else:
|
222 |
+
raise ValueError(f"{model_class} is not supported.")
|
223 |
+
|
224 |
+
|
225 |
+
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
|
226 |
+
img_str = ""
|
227 |
+
if image_logs is not None:
|
228 |
+
img_str = "You can find some example images below.\n\n"
|
229 |
+
for i, log in enumerate(image_logs):
|
230 |
+
images = log["images"]
|
231 |
+
validation_prompt = log["validation_prompt"]
|
232 |
+
validation_image = log["validation_image"]
|
233 |
+
validation_image.save(os.path.join(repo_folder, "image_control.png"))
|
234 |
+
img_str += f"prompt: {validation_prompt}\n"
|
235 |
+
images = [validation_image] + images
|
236 |
+
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
|
237 |
+
img_str += f"![images_{i})](./images_{i}.png)\n"
|
238 |
+
|
239 |
+
model_description = f"""
|
240 |
+
# controlnet-{repo_id}
|
241 |
+
|
242 |
+
These are controlnet weights trained on {base_model} with new type of conditioning.
|
243 |
+
{img_str}
|
244 |
+
"""
|
245 |
+
model_card = load_or_create_model_card(
|
246 |
+
repo_id_or_path=repo_id,
|
247 |
+
from_training=True,
|
248 |
+
license="creativeml-openrail-m",
|
249 |
+
base_model=base_model,
|
250 |
+
model_description=model_description,
|
251 |
+
inference=True,
|
252 |
+
)
|
253 |
+
|
254 |
+
tags = [
|
255 |
+
"stable-diffusion",
|
256 |
+
"stable-diffusion-diffusers",
|
257 |
+
"text-to-image",
|
258 |
+
"diffusers",
|
259 |
+
"controlnet",
|
260 |
+
"diffusers-training",
|
261 |
+
]
|
262 |
+
model_card = populate_model_card(model_card, tags=tags)
|
263 |
+
|
264 |
+
model_card.save(os.path.join(repo_folder, "README.md"))
|
265 |
+
|
266 |
+
|
267 |
+
def parse_args(input_args=None):
|
268 |
+
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
|
269 |
+
parser.add_argument(
|
270 |
+
"--pretrained_model_name_or_path",
|
271 |
+
type=str,
|
272 |
+
default=None,
|
273 |
+
required=True,
|
274 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
275 |
+
)
|
276 |
+
parser.add_argument(
|
277 |
+
"--controlnet_model_name_or_path",
|
278 |
+
type=str,
|
279 |
+
default=None,
|
280 |
+
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
|
281 |
+
" If not specified controlnet weights are initialized from unet.",
|
282 |
+
)
|
283 |
+
parser.add_argument(
|
284 |
+
"--revision",
|
285 |
+
type=str,
|
286 |
+
default=None,
|
287 |
+
required=False,
|
288 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
289 |
+
)
|
290 |
+
parser.add_argument(
|
291 |
+
"--variant",
|
292 |
+
type=str,
|
293 |
+
default=None,
|
294 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
295 |
+
)
|
296 |
+
parser.add_argument(
|
297 |
+
"--tokenizer_name",
|
298 |
+
type=str,
|
299 |
+
default=None,
|
300 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
301 |
+
)
|
302 |
+
parser.add_argument(
|
303 |
+
"--output_dir",
|
304 |
+
type=str,
|
305 |
+
default="controlnet-model",
|
306 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
307 |
+
)
|
308 |
+
parser.add_argument(
|
309 |
+
"--cache_dir",
|
310 |
+
type=str,
|
311 |
+
default=None,
|
312 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
313 |
+
)
|
314 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
315 |
+
parser.add_argument(
|
316 |
+
"--resolution",
|
317 |
+
type=int,
|
318 |
+
default=512,
|
319 |
+
help=(
|
320 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
321 |
+
" resolution"
|
322 |
+
),
|
323 |
+
)
|
324 |
+
parser.add_argument(
|
325 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--max_train_steps",
|
329 |
+
type=int,
|
330 |
+
default=None,
|
331 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
332 |
+
)
|
333 |
+
parser.add_argument(
|
334 |
+
"--checkpointing_steps",
|
335 |
+
type=int,
|
336 |
+
default=500,
|
337 |
+
help=(
|
338 |
+
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
|
339 |
+
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
|
340 |
+
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
|
341 |
+
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
|
342 |
+
"instructions."
|
343 |
+
),
|
344 |
+
)
|
345 |
+
parser.add_argument(
|
346 |
+
"--checkpoints_total_limit",
|
347 |
+
type=int,
|
348 |
+
default=None,
|
349 |
+
help=("Max number of checkpoints to store."),
|
350 |
+
)
|
351 |
+
parser.add_argument(
|
352 |
+
"--resume_from_checkpoint",
|
353 |
+
type=str,
|
354 |
+
default=None,
|
355 |
+
help=(
|
356 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
357 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
358 |
+
),
|
359 |
+
)
|
360 |
+
parser.add_argument(
|
361 |
+
"--gradient_accumulation_steps",
|
362 |
+
type=int,
|
363 |
+
default=1,
|
364 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
365 |
+
)
|
366 |
+
parser.add_argument(
|
367 |
+
"--gradient_checkpointing",
|
368 |
+
action="store_true",
|
369 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
370 |
+
)
|
371 |
+
parser.add_argument(
|
372 |
+
"--learning_rate",
|
373 |
+
type=float,
|
374 |
+
default=5e-6,
|
375 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
376 |
+
)
|
377 |
+
parser.add_argument(
|
378 |
+
"--scale_lr",
|
379 |
+
action="store_true",
|
380 |
+
default=False,
|
381 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
382 |
+
)
|
383 |
+
parser.add_argument(
|
384 |
+
"--lr_scheduler",
|
385 |
+
type=str,
|
386 |
+
default="constant",
|
387 |
+
help=(
|
388 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
389 |
+
' "constant", "constant_with_warmup"]'
|
390 |
+
),
|
391 |
+
)
|
392 |
+
parser.add_argument(
|
393 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
394 |
+
)
|
395 |
+
parser.add_argument(
|
396 |
+
"--lr_num_cycles",
|
397 |
+
type=int,
|
398 |
+
default=1,
|
399 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
400 |
+
)
|
401 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
402 |
+
parser.add_argument(
|
403 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
404 |
+
)
|
405 |
+
parser.add_argument(
|
406 |
+
"--dataset_num_workers",
|
407 |
+
type=int,
|
408 |
+
default=1,
|
409 |
+
help=(
|
410 |
+
"Number of subprocesses to use for data loading."
|
411 |
+
),
|
412 |
+
)
|
413 |
+
parser.add_argument(
|
414 |
+
"--dataloader_num_workers",
|
415 |
+
type=int,
|
416 |
+
default=0,
|
417 |
+
help=(
|
418 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
419 |
+
),
|
420 |
+
)
|
421 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
422 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
423 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
424 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
425 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
426 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
427 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
428 |
+
parser.add_argument(
|
429 |
+
"--hub_model_id",
|
430 |
+
type=str,
|
431 |
+
default=None,
|
432 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
433 |
+
)
|
434 |
+
parser.add_argument(
|
435 |
+
"--logging_dir",
|
436 |
+
type=str,
|
437 |
+
default="logs",
|
438 |
+
help=(
|
439 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
440 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
441 |
+
),
|
442 |
+
)
|
443 |
+
parser.add_argument(
|
444 |
+
"--allow_tf32",
|
445 |
+
action="store_true",
|
446 |
+
help=(
|
447 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
448 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
449 |
+
),
|
450 |
+
)
|
451 |
+
parser.add_argument(
|
452 |
+
"--report_to",
|
453 |
+
type=str,
|
454 |
+
default="tensorboard",
|
455 |
+
help=(
|
456 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
457 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
458 |
+
),
|
459 |
+
)
|
460 |
+
parser.add_argument(
|
461 |
+
"--mixed_precision",
|
462 |
+
type=str,
|
463 |
+
default=None,
|
464 |
+
choices=["no", "fp16", "bf16"],
|
465 |
+
help=(
|
466 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
467 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
468 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
469 |
+
),
|
470 |
+
)
|
471 |
+
parser.add_argument(
|
472 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
473 |
+
)
|
474 |
+
parser.add_argument(
|
475 |
+
"--set_grads_to_none",
|
476 |
+
action="store_true",
|
477 |
+
help=(
|
478 |
+
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
|
479 |
+
" behaviors, so disable this argument if it causes any problems. More info:"
|
480 |
+
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
|
481 |
+
),
|
482 |
+
)
|
483 |
+
parser.add_argument(
|
484 |
+
"--dataset_name",
|
485 |
+
type=str,
|
486 |
+
default=None,
|
487 |
+
help=(
|
488 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
489 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
490 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
491 |
+
),
|
492 |
+
)
|
493 |
+
parser.add_argument(
|
494 |
+
"--dataset_config_name",
|
495 |
+
type=str,
|
496 |
+
default=None,
|
497 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
498 |
+
)
|
499 |
+
parser.add_argument(
|
500 |
+
"--train_data_dir",
|
501 |
+
type=str,
|
502 |
+
default=None,
|
503 |
+
help=(
|
504 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
505 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
506 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
507 |
+
),
|
508 |
+
)
|
509 |
+
parser.add_argument(
|
510 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing the target image."
|
511 |
+
)
|
512 |
+
parser.add_argument(
|
513 |
+
"--conditioning_image_column",
|
514 |
+
type=str,
|
515 |
+
default="conditioning_image",
|
516 |
+
help="The column of the dataset containing the controlnet conditioning image.",
|
517 |
+
)
|
518 |
+
parser.add_argument(
|
519 |
+
"--caption_column",
|
520 |
+
type=str,
|
521 |
+
default="text",
|
522 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
523 |
+
)
|
524 |
+
parser.add_argument(
|
525 |
+
"--proportion_empty_prompts",
|
526 |
+
type=float,
|
527 |
+
default=0,
|
528 |
+
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
|
529 |
+
)
|
530 |
+
parser.add_argument(
|
531 |
+
"--validation_prompt",
|
532 |
+
type=str,
|
533 |
+
default=None,
|
534 |
+
nargs="+",
|
535 |
+
help=(
|
536 |
+
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
|
537 |
+
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
|
538 |
+
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
|
539 |
+
),
|
540 |
+
)
|
541 |
+
parser.add_argument(
|
542 |
+
"--validation_image",
|
543 |
+
type=str,
|
544 |
+
default=None,
|
545 |
+
nargs="+",
|
546 |
+
help=(
|
547 |
+
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
|
548 |
+
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
|
549 |
+
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
|
550 |
+
" `--validation_image` that will be used with all `--validation_prompt`s."
|
551 |
+
),
|
552 |
+
)
|
553 |
+
parser.add_argument(
|
554 |
+
"--num_validation_images",
|
555 |
+
type=int,
|
556 |
+
default=4,
|
557 |
+
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
|
558 |
+
)
|
559 |
+
parser.add_argument(
|
560 |
+
"--validation_steps",
|
561 |
+
type=int,
|
562 |
+
default=100,
|
563 |
+
help=(
|
564 |
+
"Run validation every X steps. Validation consists of running the prompt"
|
565 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`"
|
566 |
+
" and logging the images."
|
567 |
+
),
|
568 |
+
)
|
569 |
+
parser.add_argument(
|
570 |
+
"--tracker_project_name",
|
571 |
+
type=str,
|
572 |
+
default="train_controlnet",
|
573 |
+
help=(
|
574 |
+
"The `project_name` argument passed to Accelerator.init_trackers for"
|
575 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
576 |
+
),
|
577 |
+
)
|
578 |
+
parser.add_argument(
|
579 |
+
"--tracker_run_name",
|
580 |
+
type=str,
|
581 |
+
default=None,
|
582 |
+
help=(
|
583 |
+
"The `run_name` argument passed to Accelerator.init_trackers for"
|
584 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
585 |
+
),
|
586 |
+
)
|
587 |
+
|
588 |
+
if input_args is not None:
|
589 |
+
args = parser.parse_args(input_args)
|
590 |
+
else:
|
591 |
+
args = parser.parse_args()
|
592 |
+
|
593 |
+
if args.dataset_name is None and args.train_data_dir is None:
|
594 |
+
raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")
|
595 |
+
|
596 |
+
if args.dataset_name is not None and args.train_data_dir is not None:
|
597 |
+
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")
|
598 |
+
|
599 |
+
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
|
600 |
+
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
|
601 |
+
|
602 |
+
if args.validation_prompt is not None and args.validation_image is None:
|
603 |
+
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
|
604 |
+
|
605 |
+
if args.validation_prompt is None and args.validation_image is not None:
|
606 |
+
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
|
607 |
+
|
608 |
+
if (
|
609 |
+
args.validation_image is not None
|
610 |
+
and args.validation_prompt is not None
|
611 |
+
and len(args.validation_image) != 1
|
612 |
+
and len(args.validation_prompt) != 1
|
613 |
+
and len(args.validation_image) != len(args.validation_prompt)
|
614 |
+
):
|
615 |
+
raise ValueError(
|
616 |
+
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
|
617 |
+
" or the same number of `--validation_prompt`s and `--validation_image`s"
|
618 |
+
)
|
619 |
+
|
620 |
+
if args.resolution % 8 != 0:
|
621 |
+
raise ValueError(
|
622 |
+
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
|
623 |
+
)
|
624 |
+
|
625 |
+
return args
|
626 |
+
|
627 |
+
class PrefetchIterableDataset(IterableDataset):
|
628 |
+
def __init__(self, image_files, resizer, transforms, conditioning_transforms, tokenizer, prefetch_factor=16):
|
629 |
+
ex_iterable = ExamplesIterable(self._generate_examples, kwargs={
|
630 |
+
"image_files": image_files,
|
631 |
+
"resizer": resizer,
|
632 |
+
"transforms": transforms,
|
633 |
+
"conditioning_transforms": conditioning_transforms,
|
634 |
+
"tokenizer": tokenizer
|
635 |
+
})
|
636 |
+
|
637 |
+
# Call the parent's __init__ with the created ex_iterable
|
638 |
+
super(PrefetchIterableDataset, self).__init__(ex_iterable=ex_iterable)
|
639 |
+
self.image_files = image_files
|
640 |
+
self.resizer = resizer
|
641 |
+
self.transforms = transforms
|
642 |
+
self.conditioning_transforms = conditioning_transforms
|
643 |
+
self.tokenizer = tokenizer
|
644 |
+
self.prefetch_factor = prefetch_factor
|
645 |
+
self.queue = Queue(maxsize=prefetch_factor)
|
646 |
+
# 미리 계산된 input_ids
|
647 |
+
self.empty_input_ids = tokenizer(
|
648 |
+
"",
|
649 |
+
max_length=tokenizer.model_max_length,
|
650 |
+
padding="max_length",
|
651 |
+
truncation=True,
|
652 |
+
return_tensors="pt"
|
653 |
+
).input_ids[0]
|
654 |
+
|
655 |
+
def _generate_examples(self, image_files, resizer, transforms, conditioning_transforms, tokenizer):
|
656 |
+
for image_file in image_files:
|
657 |
+
yield self.preprocess_image(image_file)
|
658 |
+
|
659 |
+
def preprocess_image(self, image_file):
|
660 |
+
image_path = os.path.join(args.train_data_dir, image_file)
|
661 |
+
image = Image.open(image_path).convert("RGB")
|
662 |
+
image = self.resizer(image)
|
663 |
+
return {
|
664 |
+
"pixel_values": self.transforms(image),
|
665 |
+
"conditioning_pixel_values": self.conditioning_transforms(image),
|
666 |
+
"input_ids": self.empty_input_ids,
|
667 |
+
}
|
668 |
+
|
669 |
+
def producer(self):
|
670 |
+
with Pool(self.num_workers) as p:
|
671 |
+
for item in p.imap(self.preprocess_image, cycle(self.image_files)):
|
672 |
+
self.queue.put(item)
|
673 |
+
|
674 |
+
def __iter__(self):
|
675 |
+
worker_info = get_worker_info()
|
676 |
+
if worker_info is None: # single-process data loading
|
677 |
+
iter_start = 0
|
678 |
+
iter_end = len(self.image_files)
|
679 |
+
else: # in a worker process
|
680 |
+
per_worker = int(math.ceil(len(self.image_files) / float(worker_info.num_workers)))
|
681 |
+
worker_id = worker_info.id
|
682 |
+
iter_start = worker_id * per_worker
|
683 |
+
iter_end = min(iter_start + per_worker, len(self.image_files))
|
684 |
+
|
685 |
+
# 각 워커에 할당된 이미지 파일
|
686 |
+
worker_image_files = self.image_files[iter_start:iter_end]
|
687 |
+
|
688 |
+
# 프리페치를 위한 큐 생성
|
689 |
+
queue = Queue(maxsize=self.prefetch_factor)
|
690 |
+
|
691 |
+
# 프로듀서 함수 정의
|
692 |
+
def producer():
|
693 |
+
for image_file in cycle(worker_image_files): # cycle을 사용하여 무한 반복
|
694 |
+
item = self.preprocess_image(image_file)
|
695 |
+
queue.put(item)
|
696 |
+
|
697 |
+
# 프로듀서 스레드 시작
|
698 |
+
thread = Thread(target=producer)
|
699 |
+
thread.daemon = True
|
700 |
+
thread.start()
|
701 |
+
|
702 |
+
# 아이템 yield
|
703 |
+
while True:
|
704 |
+
yield queue.get()
|
705 |
+
|
706 |
+
|
707 |
+
def collate_fn(examples):
|
708 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
709 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
710 |
+
|
711 |
+
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
|
712 |
+
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()
|
713 |
+
|
714 |
+
input_ids = torch.stack([example["input_ids"] for example in examples])
|
715 |
+
|
716 |
+
return {
|
717 |
+
"pixel_values": pixel_values,
|
718 |
+
"conditioning_pixel_values": conditioning_pixel_values,
|
719 |
+
"input_ids": input_ids,
|
720 |
+
}
|
721 |
+
|
722 |
+
def main(args):
|
723 |
+
if args.report_to == "wandb" and args.hub_token is not None:
|
724 |
+
raise ValueError(
|
725 |
+
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
726 |
+
" Please use `huggingface-cli login` to authenticate with the Hub."
|
727 |
+
)
|
728 |
+
os.environ["WANDB__SERVICE_WAIT"] = "300"
|
729 |
+
|
730 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
731 |
+
|
732 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
733 |
+
|
734 |
+
accelerator = Accelerator(
|
735 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
736 |
+
mixed_precision=args.mixed_precision,
|
737 |
+
log_with=args.report_to,
|
738 |
+
project_config=accelerator_project_config,
|
739 |
+
)
|
740 |
+
|
741 |
+
# Disable AMP for MPS.
|
742 |
+
if torch.backends.mps.is_available():
|
743 |
+
accelerator.native_amp = False
|
744 |
+
|
745 |
+
# Make one log on every process with the configuration for debugging.
|
746 |
+
logging.basicConfig(
|
747 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
748 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
749 |
+
level=logging.INFO,
|
750 |
+
)
|
751 |
+
logger.info(accelerator.state, main_process_only=False)
|
752 |
+
logger.info(f"Training/evaluation parameters {args}")
|
753 |
+
if accelerator.is_local_main_process:
|
754 |
+
transformers.utils.logging.set_verbosity_warning()
|
755 |
+
diffusers.utils.logging.set_verbosity_info()
|
756 |
+
else:
|
757 |
+
transformers.utils.logging.set_verbosity_error()
|
758 |
+
diffusers.utils.logging.set_verbosity_error()
|
759 |
+
|
760 |
+
# If passed along, set the training seed now.
|
761 |
+
if args.seed is not None:
|
762 |
+
set_seed(args.seed)
|
763 |
+
|
764 |
+
# Handle the repository creation
|
765 |
+
if accelerator.is_main_process:
|
766 |
+
if args.output_dir is not None:
|
767 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
768 |
+
|
769 |
+
if args.push_to_hub:
|
770 |
+
repo_id = create_repo(
|
771 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
772 |
+
).repo_id
|
773 |
+
|
774 |
+
# Load the tokenizer
|
775 |
+
if args.tokenizer_name:
|
776 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
777 |
+
elif args.pretrained_model_name_or_path:
|
778 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
779 |
+
args.pretrained_model_name_or_path,
|
780 |
+
subfolder="tokenizer",
|
781 |
+
revision=args.revision,
|
782 |
+
use_fast=False,
|
783 |
+
)
|
784 |
+
|
785 |
+
# import correct text encoder class
|
786 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
|
787 |
+
|
788 |
+
# Load scheduler and models
|
789 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
790 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
791 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
792 |
+
)
|
793 |
+
vae = AutoencoderKL.from_pretrained(
|
794 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
|
795 |
+
)
|
796 |
+
unet = UNet2DConditionModel.from_pretrained(
|
797 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
|
798 |
+
)
|
799 |
+
|
800 |
+
if args.controlnet_model_name_or_path:
|
801 |
+
logger.info("Loading existing controlnet weights")
|
802 |
+
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path)
|
803 |
+
else:
|
804 |
+
logger.info("Initializing controlnet weights from unet")
|
805 |
+
controlnet = ControlNetModel.from_unet(unet)
|
806 |
+
|
807 |
+
# Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files)
|
808 |
+
def unwrap_model(model):
|
809 |
+
model = accelerator.unwrap_model(model)
|
810 |
+
model = model._orig_mod if is_compiled_module(model) else model
|
811 |
+
return model
|
812 |
+
|
813 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
814 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
815 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
816 |
+
def save_model_hook(models, weights, output_dir):
|
817 |
+
if accelerator.is_main_process:
|
818 |
+
i = len(weights) - 1
|
819 |
+
|
820 |
+
while len(weights) > 0:
|
821 |
+
weights.pop()
|
822 |
+
model = models[i]
|
823 |
+
|
824 |
+
sub_dir = "controlnet"
|
825 |
+
model.save_pretrained(os.path.join(output_dir, sub_dir))
|
826 |
+
|
827 |
+
i -= 1
|
828 |
+
|
829 |
+
def load_model_hook(models, input_dir):
|
830 |
+
while len(models) > 0:
|
831 |
+
# pop models so that they are not loaded again
|
832 |
+
model = models.pop()
|
833 |
+
|
834 |
+
# load diffusers style into model
|
835 |
+
load_model = ControlNetModel.from_pretrained(input_dir, subfolder="controlnet")
|
836 |
+
model.register_to_config(**load_model.config)
|
837 |
+
|
838 |
+
model.load_state_dict(load_model.state_dict())
|
839 |
+
del load_model
|
840 |
+
|
841 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
842 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
843 |
+
|
844 |
+
vae.requires_grad_(False)
|
845 |
+
unet.requires_grad_(False)
|
846 |
+
text_encoder.requires_grad_(False)
|
847 |
+
controlnet.train()
|
848 |
+
|
849 |
+
if args.enable_xformers_memory_efficient_attention:
|
850 |
+
if is_xformers_available():
|
851 |
+
import xformers
|
852 |
+
|
853 |
+
xformers_version = version.parse(xformers.__version__)
|
854 |
+
if xformers_version == version.parse("0.0.16"):
|
855 |
+
logger.warning(
|
856 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
857 |
+
)
|
858 |
+
unet.enable_xformers_memory_efficient_attention()
|
859 |
+
controlnet.enable_xformers_memory_efficient_attention()
|
860 |
+
else:
|
861 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
862 |
+
|
863 |
+
if args.gradient_checkpointing:
|
864 |
+
controlnet.enable_gradient_checkpointing()
|
865 |
+
|
866 |
+
# Check that all trainable models are in full precision
|
867 |
+
low_precision_error_string = (
|
868 |
+
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
|
869 |
+
" doing mixed precision training, copy of the weights should still be float32."
|
870 |
+
)
|
871 |
+
|
872 |
+
if unwrap_model(controlnet).dtype != torch.float32:
|
873 |
+
raise ValueError(
|
874 |
+
f"Controlnet loaded as datatype {unwrap_model(controlnet).dtype}. {low_precision_error_string}"
|
875 |
+
)
|
876 |
+
|
877 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
878 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
879 |
+
if args.allow_tf32:
|
880 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
881 |
+
|
882 |
+
if args.scale_lr:
|
883 |
+
args.learning_rate = (
|
884 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
885 |
+
)
|
886 |
+
|
887 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
888 |
+
if args.use_8bit_adam:
|
889 |
+
try:
|
890 |
+
import bitsandbytes as bnb
|
891 |
+
except ImportError:
|
892 |
+
raise ImportError(
|
893 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
894 |
+
)
|
895 |
+
|
896 |
+
optimizer_class = bnb.optim.AdamW8bit
|
897 |
+
else:
|
898 |
+
optimizer_class = torch.optim.AdamW
|
899 |
+
|
900 |
+
# Optimizer creation
|
901 |
+
params_to_optimize = controlnet.parameters()
|
902 |
+
optimizer = optimizer_class(
|
903 |
+
params_to_optimize,
|
904 |
+
lr=args.learning_rate,
|
905 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
906 |
+
weight_decay=args.adam_weight_decay,
|
907 |
+
eps=args.adam_epsilon,
|
908 |
+
)
|
909 |
+
|
910 |
+
logger.info("Loading the training dataset")
|
911 |
+
image_files = [f for f in os.listdir(args.train_data_dir) if
|
912 |
+
f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
|
913 |
+
|
914 |
+
# Define image transforms
|
915 |
+
image_resizers = transforms.Compose([
|
916 |
+
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
917 |
+
transforms.CenterCrop(args.resolution),
|
918 |
+
])
|
919 |
+
image_transforms = transforms.Compose([
|
920 |
+
transforms.ToTensor(),
|
921 |
+
transforms.Normalize([0.5], [0.5]),
|
922 |
+
])
|
923 |
+
conditioning_image_transforms = transforms.Compose([
|
924 |
+
transforms.Grayscale(num_output_channels=3),
|
925 |
+
transforms.ToTensor(),
|
926 |
+
])
|
927 |
+
|
928 |
+
train_dataset = PrefetchIterableDataset(
|
929 |
+
image_files=image_files,
|
930 |
+
resizer=image_resizers,
|
931 |
+
transforms=image_transforms,
|
932 |
+
conditioning_transforms=conditioning_image_transforms,
|
933 |
+
tokenizer=tokenizer,
|
934 |
+
prefetch_factor=128,
|
935 |
+
)
|
936 |
+
|
937 |
+
logger.info("Creating the training dataloader")
|
938 |
+
train_dataloader = torch.utils.data.DataLoader(
|
939 |
+
train_dataset,
|
940 |
+
batch_size=args.train_batch_size,
|
941 |
+
collate_fn=collate_fn,
|
942 |
+
num_workers=32,
|
943 |
+
pin_memory=True
|
944 |
+
)
|
945 |
+
|
946 |
+
lr_scheduler = get_scheduler(
|
947 |
+
args.lr_scheduler,
|
948 |
+
optimizer=optimizer,
|
949 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
950 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
951 |
+
num_cycles=args.lr_num_cycles,
|
952 |
+
power=args.lr_power,
|
953 |
+
)
|
954 |
+
|
955 |
+
# Prepare everything with our `accelerator`.
|
956 |
+
controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
957 |
+
controlnet, optimizer, train_dataloader, lr_scheduler
|
958 |
+
)
|
959 |
+
|
960 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
961 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
962 |
+
weight_dtype = torch.float32
|
963 |
+
if accelerator.mixed_precision == "fp16":
|
964 |
+
weight_dtype = torch.float16
|
965 |
+
elif accelerator.mixed_precision == "bf16":
|
966 |
+
weight_dtype = torch.bfloat16
|
967 |
+
|
968 |
+
# Move vae, unet and text_encoder to device and cast to weight_dtype
|
969 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
970 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
971 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
972 |
+
|
973 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
974 |
+
# The trackers initializes automatically on the main process.
|
975 |
+
if accelerator.is_main_process:
|
976 |
+
tracker_config = dict(vars(args))
|
977 |
+
|
978 |
+
# tensorboard cannot handle list types for config
|
979 |
+
tracker_config.pop("validation_prompt")
|
980 |
+
tracker_config.pop("validation_image")
|
981 |
+
|
982 |
+
logger.info(f"Init trackers: {args.tracker_project_name}")
|
983 |
+
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
|
984 |
+
# if args.tracker_run_name is not None:
|
985 |
+
# accelerator.trackers[-1].run.name = args.tracker_run_name
|
986 |
+
|
987 |
+
# Train!
|
988 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
989 |
+
|
990 |
+
logger.info("***** Running training *****")
|
991 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
992 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
993 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
994 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
995 |
+
global_step = 0
|
996 |
+
first_epoch = 0
|
997 |
+
|
998 |
+
# Potentially load in the weights and states from a previous save
|
999 |
+
if args.resume_from_checkpoint:
|
1000 |
+
if args.resume_from_checkpoint != "latest":
|
1001 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1002 |
+
else:
|
1003 |
+
# Get the most recent checkpoint
|
1004 |
+
dirs = os.listdir(args.output_dir)
|
1005 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1006 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1007 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1008 |
+
|
1009 |
+
if path is None:
|
1010 |
+
accelerator.print(
|
1011 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1012 |
+
)
|
1013 |
+
args.resume_from_checkpoint = None
|
1014 |
+
initial_global_step = 0
|
1015 |
+
else:
|
1016 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1017 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1018 |
+
global_step = int(path.split("-")[1])
|
1019 |
+
|
1020 |
+
initial_global_step = global_step
|
1021 |
+
else:
|
1022 |
+
initial_global_step = 0
|
1023 |
+
|
1024 |
+
progress_bar = tqdm(
|
1025 |
+
range(0, args.max_train_steps),
|
1026 |
+
initial=initial_global_step,
|
1027 |
+
desc="Steps",
|
1028 |
+
# Only show the progress bar once on each machine.
|
1029 |
+
disable=not accelerator.is_local_main_process,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
image_logs = None
|
1033 |
+
while True:
|
1034 |
+
for batch in train_dataloader:
|
1035 |
+
try:
|
1036 |
+
with accelerator.accumulate(controlnet):
|
1037 |
+
# Convert images to latent space
|
1038 |
+
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
|
1039 |
+
latents = latents * vae.config.scaling_factor
|
1040 |
+
|
1041 |
+
# Sample noise that we'll add to the latents
|
1042 |
+
noise = torch.randn_like(latents)
|
1043 |
+
bsz = latents.shape[0]
|
1044 |
+
# Sample a random timestep for each image
|
1045 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
1046 |
+
timesteps = timesteps.long()
|
1047 |
+
|
1048 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
1049 |
+
# (this is the forward diffusion process)
|
1050 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
1051 |
+
|
1052 |
+
# Get the text embedding for conditioning
|
1053 |
+
encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0]
|
1054 |
+
|
1055 |
+
controlnet_image = batch["conditioning_pixel_values"].to(dtype=weight_dtype)
|
1056 |
+
|
1057 |
+
down_block_res_samples, mid_block_res_sample = controlnet(
|
1058 |
+
noisy_latents,
|
1059 |
+
timesteps,
|
1060 |
+
encoder_hidden_states=encoder_hidden_states,
|
1061 |
+
controlnet_cond=controlnet_image,
|
1062 |
+
return_dict=False,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
# Predict the noise residual
|
1066 |
+
model_pred = unet(
|
1067 |
+
noisy_latents,
|
1068 |
+
timesteps,
|
1069 |
+
encoder_hidden_states=encoder_hidden_states,
|
1070 |
+
down_block_additional_residuals=[
|
1071 |
+
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
1072 |
+
],
|
1073 |
+
mid_block_additional_residual=mid_block_res_sample.to(dtype=weight_dtype),
|
1074 |
+
return_dict=False,
|
1075 |
+
)[0]
|
1076 |
+
|
1077 |
+
# Get the target for loss depending on the prediction type
|
1078 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1079 |
+
target = noise
|
1080 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1081 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
1082 |
+
else:
|
1083 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1084 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1085 |
+
|
1086 |
+
accelerator.backward(loss)
|
1087 |
+
if accelerator.sync_gradients:
|
1088 |
+
params_to_clip = controlnet.parameters()
|
1089 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1090 |
+
optimizer.step()
|
1091 |
+
lr_scheduler.step()
|
1092 |
+
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
|
1093 |
+
|
1094 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1095 |
+
if accelerator.sync_gradients:
|
1096 |
+
progress_bar.update(1)
|
1097 |
+
global_step += 1
|
1098 |
+
|
1099 |
+
if accelerator.is_main_process:
|
1100 |
+
if global_step % args.checkpointing_steps == 0:
|
1101 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1102 |
+
if args.checkpoints_total_limit is not None:
|
1103 |
+
checkpoints = os.listdir(args.output_dir)
|
1104 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1105 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1106 |
+
|
1107 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1108 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1109 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1110 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1111 |
+
|
1112 |
+
logger.info(
|
1113 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1114 |
+
)
|
1115 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1116 |
+
|
1117 |
+
for removing_checkpoint in removing_checkpoints:
|
1118 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1119 |
+
shutil.rmtree(removing_checkpoint)
|
1120 |
+
|
1121 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1122 |
+
accelerator.save_state(save_path)
|
1123 |
+
logger.info(f"Saved state to {save_path}")
|
1124 |
+
|
1125 |
+
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
|
1126 |
+
image_logs = log_validation(
|
1127 |
+
vae,
|
1128 |
+
text_encoder,
|
1129 |
+
tokenizer,
|
1130 |
+
unet,
|
1131 |
+
controlnet,
|
1132 |
+
args,
|
1133 |
+
accelerator,
|
1134 |
+
weight_dtype,
|
1135 |
+
global_step,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1139 |
+
progress_bar.set_postfix(**logs)
|
1140 |
+
accelerator.log(logs, step=global_step)
|
1141 |
+
|
1142 |
+
if global_step >= args.max_train_steps:
|
1143 |
+
break
|
1144 |
+
except Exception as e:
|
1145 |
+
logger.warning(f"Error processing batch: {str(e)}")
|
1146 |
+
continue
|
1147 |
+
|
1148 |
+
if global_step >= args.max_train_steps:
|
1149 |
+
break
|
1150 |
+
|
1151 |
+
# Create the pipeline using using the trained modules and save it.
|
1152 |
+
accelerator.wait_for_everyone()
|
1153 |
+
if accelerator.is_main_process:
|
1154 |
+
controlnet = unwrap_model(controlnet)
|
1155 |
+
controlnet.save_pretrained(args.output_dir)
|
1156 |
+
|
1157 |
+
# Run a final round of validation.
|
1158 |
+
image_logs = None
|
1159 |
+
if args.validation_prompt is not None:
|
1160 |
+
image_logs = log_validation(
|
1161 |
+
vae=vae,
|
1162 |
+
text_encoder=text_encoder,
|
1163 |
+
tokenizer=tokenizer,
|
1164 |
+
unet=unet,
|
1165 |
+
controlnet=None,
|
1166 |
+
args=args,
|
1167 |
+
accelerator=accelerator,
|
1168 |
+
weight_dtype=weight_dtype,
|
1169 |
+
step=global_step,
|
1170 |
+
is_final_validation=True,
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
if args.push_to_hub:
|
1174 |
+
save_model_card(
|
1175 |
+
repo_id,
|
1176 |
+
image_logs=image_logs,
|
1177 |
+
base_model=args.pretrained_model_name_or_path,
|
1178 |
+
repo_folder=args.output_dir,
|
1179 |
+
)
|
1180 |
+
upload_folder(
|
1181 |
+
repo_id=repo_id,
|
1182 |
+
folder_path=args.output_dir,
|
1183 |
+
commit_message="End of training",
|
1184 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1185 |
+
)
|
1186 |
+
|
1187 |
+
accelerator.end_training()
|
1188 |
+
|
1189 |
+
|
1190 |
+
if __name__ == "__main__":
|
1191 |
+
args = parse_args()
|
1192 |
+
main(args)
|