Spaces:
Sleeping
Sleeping
[UPD] app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
import IPython.display as ipd
|
6 |
from sklearn.preprocessing import LabelEncoder
|
7 |
from tensorflow.keras.models import load_model
|
8 |
|
9 |
|
10 |
-
# le = LabelEncoder()
|
11 |
-
|
12 |
model = load_model('model/audio_prediction_model')
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
15 |
def prediction_audio(audiofile, model):
|
16 |
|
17 |
audio_data, sample_rate = librosa.load(audiofile, res_type='kaiser_fast')
|
@@ -22,7 +24,7 @@ def prediction_audio(audiofile, model):
|
|
22 |
predicted_label = np.argmax(model.predict(X), axis=-1)
|
23 |
# predicted_class = le.inverse_transform(predicted_label)
|
24 |
|
25 |
-
return predicted_label[0]
|
26 |
|
27 |
st.title("Détection de coups de feu")
|
28 |
|
|
|
1 |
import streamlit as st
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
import IPython.display as ipd
|
6 |
from sklearn.preprocessing import LabelEncoder
|
7 |
from tensorflow.keras.models import load_model
|
8 |
|
9 |
|
|
|
|
|
10 |
model = load_model('model/audio_prediction_model')
|
11 |
|
12 |
|
13 |
+
df = pd.read_csv('UrbanSound8K.csv')
|
14 |
+
|
15 |
+
categories = df.groupby('classID')['class'].unique
|
16 |
+
|
17 |
def prediction_audio(audiofile, model):
|
18 |
|
19 |
audio_data, sample_rate = librosa.load(audiofile, res_type='kaiser_fast')
|
|
|
24 |
predicted_label = np.argmax(model.predict(X), axis=-1)
|
25 |
# predicted_class = le.inverse_transform(predicted_label)
|
26 |
|
27 |
+
return categories[predicted_label][0]
|
28 |
|
29 |
st.title("Détection de coups de feu")
|
30 |
|