Spaces:
Sleeping
Sleeping
| from transformers import DetrImageProcessor, DetrForObjectDetection | |
| import torch | |
| from PIL import Image | |
| import requests | |
| # Fonction pour envoyer l'email via Mailtrap | |
| def send_email(api_key, inbox_id, subject, content, from_email, to_email): | |
| url = f"https://mailtrap.io/api/v1/inboxes/{inbox_id}/messages" | |
| headers = { | |
| "Api-Token": api_key, | |
| "Content-Type": "application/json" | |
| } | |
| data = { | |
| "from": from_email, | |
| "to": to_email, | |
| "subject": subject, | |
| "text": content | |
| } | |
| response = requests.post(url, headers=headers, json=data) | |
| # Debug: Print the raw response | |
| print(f"Response content: {response.text}") | |
| # Check if response is empty or not JSON | |
| try: | |
| response_json = response.json() | |
| except ValueError: | |
| response_json = {} | |
| return response.status_code, response_json | |
| # Fonction pour générer du texte avec Gemini | |
| def generate_text_with_gemini(api_key, prompt): | |
| url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key=AIzaSyCJVUr-76I4TL42X98d9U0THbRD3MKlB38'" # Remplacez par l'URL correcte de l'API Gemini | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| data = { | |
| "prompt": prompt, | |
| "max_tokens": 150, # Ajustez en fonction de vos besoins | |
| "temperature": 0.7 # Ajustez en fonction de vos besoins | |
| } | |
| response = requests.post(url, headers=headers, json=data) | |
| response_data = response.json() | |
| return response_data.get('text', '') | |
| # URL de l'image d'exemple | |
| url = "https://www.saint-genes.com/wp-content/uploads/2019/10/DSC05405.jpg" | |
| image = Image.open(requests.get(url, stream=True).raw) | |
| # Téléchargement du modèle sans la dépendance 'timm' | |
| processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
| model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
| # Préparer l'image pour le modèle | |
| inputs = processor(images=image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| # Post-traitement des résultats pour obtenir les boîtes englobantes et les labels | |
| target_sizes = torch.tensor([image.size[::-1]]) | |
| results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] | |
| # Compter le nombre de personnes détectées | |
| persons = 0 | |
| for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
| if model.config.id2label[label.item()] == 'person': | |
| persons += 1 | |
| expected_number_of_persons = 10 # Nombre attendu de personnes | |
| absents = expected_number_of_persons - persons | |
| # Générer le contenu de l'email avec Gemini | |
| prompt = f"Notifier de l'absence: Le nombre de personnes présentes est de {persons}. Le nombre d'absents est de {absents}." | |
| gemini_api_key = "AIzaSyCJVUr-76I4TL42X98d9U0THbRD3MKlB38" | |
| email_content = generate_text_with_gemini(gemini_api_key, prompt) | |
| # Définir les variables pour l'email | |
| email_subject = "Notification d'absents" | |
| from_email = "your-email@example.com" | |
| to_email = "recipient@example.com" | |
| # Clés API Mailtrap et informations d'email | |
| mailtrap_api_key = "0dfd557dc980d49b306ae8647a9fa585" | |
| inbox_id = "3128145" | |
| # Envoyer l'email | |
| status_code, response_json = send_email(mailtrap_api_key, inbox_id, email_subject, email_content, from_email, to_email) | |
| print(f"Email sent with status code {status_code}: {response_json}") | |