QP_ANmixtao / modules /llama_cpp_python_hijack.py
zhengr's picture
Update modules/llama_cpp_python_hijack.py
42e2836 verified
from typing import Sequence
from tqdm import tqdm
from modules import shared
from modules.cache_utils import process_llamacpp_cache
try:
import llama_cpp
except:
llama_cpp = None
try:
import llama_cpp_cuda
except:
llama_cpp_cuda = None
try:
import llama_cpp_cuda_tensorcores
except:
llama_cpp_cuda_tensorcores = None
def eval_with_progress(self, tokens: Sequence[int]):
"""
A copy of
https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/llama.py
with tqdm to show prompt processing progress.
"""
assert self._ctx.ctx is not None
assert self._batch.batch is not None
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
if len(tokens) > 1:
progress_bar = tqdm(range(0, len(tokens), self.n_batch), desc="Prompt evaluation", leave=False)
else:
progress_bar = range(0, len(tokens), self.n_batch)
for i in progress_bar:
batch = tokens[i : min(len(tokens), i + self.n_batch)]
n_past = self.n_tokens
n_tokens = len(batch)
self._batch.set_batch(
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
)
self._ctx.decode(self._batch)
# Save tokens
self.input_ids[n_past : n_past + n_tokens] = batch
# Save logits
if self.context_params.logits_all:
rows = n_tokens
cols = self._n_vocab
logits = self._ctx.get_logits()[: rows * cols]
self.scores[n_past : n_past + n_tokens, :].reshape(-1)[: :] = logits
else:
rows = 1
cols = self._n_vocab
logits = self._ctx.get_logits()[: rows * cols]
self.scores[n_past + n_tokens - 1, :].reshape(-1)[: :] = logits
# Update n_tokens
self.n_tokens += n_tokens
def monkey_patch_generate(lib):
def my_generate(self, *args, **kwargs):
if shared.args.streaming_llm:
new_sequence = args[0]
past_sequence = self._input_ids
# Do the cache trimming for StreamingLLM
process_llamacpp_cache(self, new_sequence, past_sequence)
for output in self.original_generate(*args, **kwargs):
yield output
lib.Llama.original_generate = lib.Llama.generate
lib.Llama.generate = my_generate
for lib in [llama_cpp, llama_cpp_cuda, llama_cpp_cuda_tensorcores]:
if lib is not None:
lib.Llama.eval = eval_with_progress
monkey_patch_generate(lib)