Spaces:
Sleeping
Sleeping
''' | |
This file has been 100% copied from this PR to the Transformers library: | |
https://github.com/huggingface/transformers/pull/27557 | |
Author: Saibo-creator | |
Author GitHub: https://github.com/Saibo-creator | |
All credits go to the author. | |
''' | |
import logging | |
import re | |
import time | |
from abc import ABC | |
from functools import lru_cache | |
from typing import Dict, List | |
import torch | |
from modules import shared | |
logger = logging.getLogger(__name__) | |
######################## | |
# EBNF Grammar Parsing # | |
######################## | |
END_OF_ALTERNATE_MARKER = 0 | |
END_OF_RULE_MARKER = 0 | |
TO_BE_FILLED_MARKER = 0 | |
REF_RULE_MARKER = 1 | |
LITERAL_MARKER = 2 | |
class ParseState: | |
def __init__(self): | |
self.symbol_ids = {} | |
self.grammar_encoding = [] # old name: out_grammar | |
def get_symbol_id(state, src): | |
if src not in state.symbol_ids: | |
state.symbol_ids[src] = len(state.symbol_ids) | |
return state.symbol_ids[src] | |
def generate_symbol_id(state, base_name): | |
next_id = len(state.symbol_ids) | |
state.symbol_ids[base_name + "_" + str(next_id)] = next_id | |
return next_id | |
def is_word_char(c): | |
return c.isalnum() or c == "-" or c == "_" | |
def hex_to_int(c): | |
if c.isdigit(): | |
return int(c) | |
elif "a" <= c.lower() <= "f": | |
return ord(c.lower()) - ord("a") + 10 | |
return -1 | |
def remove_leading_white_space(src, newline_ok): | |
""" | |
Skips over whitespace and comments in the input string. | |
This function processes the input string, skipping over any spaces, tabs, | |
and content following a '#' character, which denotes a comment. The parsing | |
of a comment continues until the end of the line (denoted by newline characters | |
'\r' or '\n'). If the 'newline_ok' parameter is set to False, the function | |
will stop processing and return the remaining string upon encountering a | |
newline character, otherwise it will skip over newline characters as well. | |
Parameters: | |
src (str): The input string to be processed. | |
newline_ok (bool): A flag indicating whether encountering a newline character | |
should stop the parsing (False) or if it should be skipped (True). | |
Returns: | |
str: The remaining portion of the input string after skipping whitespace and comments. | |
""" | |
pos = 0 | |
while pos < len(src) and (src[pos].isspace() or src[pos] == "#"): | |
if src[pos] == "#": | |
while pos < len(src) and src[pos] not in ("\r", "\n"): | |
pos += 1 | |
else: | |
if not newline_ok and src[pos] in ("\r", "\n"): | |
break | |
pos += 1 | |
return src[pos:] | |
def parse_name(src): | |
pos = 0 | |
while pos < len(src) and is_word_char(src[pos]): | |
pos += 1 | |
if pos == 0: | |
raise RuntimeError("expecting name at " + src) | |
return src[:pos], src[pos:] | |
def parse_char(src): | |
""" | |
parse the leading char from the input string | |
:param src: | |
:return: char, remaining_src | |
""" | |
# if we have a backslash, it's maybe an escape | |
if src[0] == "\\": | |
esc = src[1] | |
if esc == "x": | |
first = hex_to_int(src[2]) | |
if first > -1: | |
second = hex_to_int(src[3]) | |
if second > -1: | |
return (first << 4) + second, src[4:] | |
raise RuntimeError("expecting \\xNN at " + src) | |
elif esc in ('"', "[", "]"): | |
return esc, src[2:] | |
elif esc == "r": | |
return "\r", src[2:] | |
elif esc == "n": | |
return "\n", src[2:] | |
elif esc == "t": | |
return "\t", src[2:] | |
raise RuntimeError("unknown escape at " + src) | |
elif src: | |
return src[0], src[1:] | |
raise RuntimeError("unexpected end of input") | |
def parse_sequence(state, src, rule_name, outbuf, is_nested): | |
out_start_pos = len(outbuf) | |
# sequence size, will be replaced at end when known | |
outbuf.append(TO_BE_FILLED_MARKER) | |
last_sym_start = len(outbuf) | |
remaining_src = src | |
while remaining_src: | |
if remaining_src[0] == '"': # literal string | |
remaining_src = remaining_src[1:] | |
last_sym_start = len(outbuf) | |
while remaining_src[0] != '"': | |
char, remaining_src = parse_char(remaining_src) | |
# each char of a literal is encoded as a "range" of char - char | |
outbuf.append(LITERAL_MARKER) | |
outbuf.append(ord(char)) | |
outbuf.append(ord(char)) | |
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested) | |
elif remaining_src[0] == "[": # char range(s) | |
remaining_src = remaining_src[1:] | |
last_sym_start = len(outbuf) | |
# num chars in range - replaced at end of loop | |
outbuf.append(TO_BE_FILLED_MARKER) | |
while remaining_src[0] != "]": | |
char, remaining_src = parse_char(remaining_src) | |
outbuf.append(ord(char)) | |
if remaining_src[0] == "-" and remaining_src[1] != "]": | |
endchar_pair, remaining_src = parse_char(remaining_src[1:]) | |
outbuf.append(ord(endchar_pair)) | |
else: | |
# chars that aren't part of a c1-c2 range are just doubled (i.e., c-c) | |
outbuf.append(ord(char)) | |
# replace num chars with actual | |
outbuf[last_sym_start] = len(outbuf) - last_sym_start - 1 | |
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested) | |
elif is_word_char(remaining_src[0]): # rule reference | |
name, remaining_src = parse_name(remaining_src) | |
ref_rule_id = get_symbol_id(state, name) | |
remaining_src = remove_leading_white_space(remaining_src, is_nested) | |
last_sym_start = len(outbuf) | |
outbuf.append(REF_RULE_MARKER) | |
outbuf.append(ref_rule_id) | |
elif remaining_src[0] == "(": # grouping | |
# parse nested alternates into synthesized rule | |
remaining_src = remove_leading_white_space(remaining_src[1:], True) | |
sub_rule_id = generate_symbol_id(state, rule_name) | |
remaining_src = parse_alternates(state, remaining_src, rule_name, sub_rule_id, True) | |
last_sym_start = len(outbuf) | |
# output reference to synthesized rule | |
outbuf.append(REF_RULE_MARKER) | |
outbuf.append(sub_rule_id) | |
if remaining_src[0] != ")": | |
raise RuntimeError("expecting ')' at " + remaining_src) | |
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested) | |
elif remaining_src[0] in ("*", "+", "?"): # repetition operator | |
if len(outbuf) - out_start_pos - 1 == 0: | |
raise RuntimeError("expecting preceeding item to */+/? at " + remaining_src) | |
out_grammar = state.grammar_encoding | |
# apply transformation to previous symbol (last_sym_start - | |
# end) according to rewrite rules: | |
# S* --> S' ::= S S' | | |
# S+ --> S' ::= S S' | S | |
# S? --> S' ::= S | | |
sub_rule_id = generate_symbol_id(state, rule_name) | |
out_grammar.append(sub_rule_id) | |
sub_rule_start = len(out_grammar) | |
# placeholder for size of 1st alternate | |
out_grammar.append(TO_BE_FILLED_MARKER) | |
# add preceding symbol to generated rule | |
out_grammar.extend(outbuf[last_sym_start:]) | |
if remaining_src[0] in ("*", "+"): | |
# cause generated rule to recurse | |
out_grammar.append(REF_RULE_MARKER) | |
out_grammar.append(sub_rule_id) | |
# apply actual size | |
out_grammar[sub_rule_start] = len(out_grammar) - sub_rule_start | |
# mark end of 1st alternate | |
out_grammar.append(END_OF_ALTERNATE_MARKER) | |
sub_rule_start = len(out_grammar) | |
# placeholder for size of 2nd alternate | |
out_grammar.append(TO_BE_FILLED_MARKER) | |
if remaining_src[0] == "+": | |
# add preceding symbol as alternate only for '+' | |
out_grammar.extend(outbuf[last_sym_start:]) | |
# apply actual size of 2nd alternate | |
out_grammar[sub_rule_start] = len(out_grammar) - sub_rule_start | |
# mark end of 2nd alternate, then end of rule | |
out_grammar.append(END_OF_ALTERNATE_MARKER) | |
out_grammar.append(END_OF_RULE_MARKER) | |
# in original rule, replace previous symbol with reference to generated rule | |
outbuf[last_sym_start:] = [1, sub_rule_id] | |
remaining_src = remove_leading_white_space(remaining_src[1:], is_nested) | |
else: | |
break | |
# apply actual size of this alternate sequence | |
outbuf[out_start_pos] = len(outbuf) - out_start_pos | |
# mark end of alternate | |
outbuf.append(END_OF_ALTERNATE_MARKER) | |
return remaining_src | |
def parse_alternates(state, src, rule_name, rule_id, is_nested): | |
outbuf = [] | |
remaining_src = parse_sequence(state, src, rule_name, outbuf, is_nested) | |
while remaining_src and remaining_src[0] == "|": | |
remaining_src = remove_leading_white_space(remaining_src[1:], True) | |
remaining_src = parse_sequence(state, remaining_src, rule_name, outbuf, is_nested) | |
state.grammar_encoding.append(rule_id) | |
state.grammar_encoding.extend(outbuf) | |
state.grammar_encoding.append(0) | |
return remaining_src | |
def parse_rule(state, src): | |
name, remaining_src = parse_name(src) | |
remaining_src = remove_leading_white_space(remaining_src, False) | |
rule_id = get_symbol_id(state, name) | |
if remaining_src[:3] != "::=": | |
raise RuntimeError("expecting ::= at " + remaining_src) | |
remaining_src = remove_leading_white_space(remaining_src[3:], True) | |
remaining_src = parse_alternates(state, remaining_src, name, rule_id, False) | |
if remaining_src and remaining_src[0] == "\r": | |
remaining_src = remaining_src[2:] if remaining_src[1] == "\n" else remaining_src[1:] | |
elif remaining_src and remaining_src[0] == "\n": | |
remaining_src = remaining_src[1:] | |
elif remaining_src: | |
raise RuntimeError("expecting newline or end at " + remaining_src) | |
return remove_leading_white_space(remaining_src, True) | |
def parse_ebnf(src): | |
try: | |
state = ParseState() | |
grammar_repr = remove_leading_white_space(src, True) | |
last_grammar_repr = "" | |
while grammar_repr: | |
if last_grammar_repr: | |
last_parsed_rule_len = len(last_grammar_repr) - len(grammar_repr) | |
logger.debug(f"last_parsed_rule: {last_grammar_repr[:last_parsed_rule_len]}") | |
last_grammar_repr = grammar_repr | |
grammar_repr = parse_rule(state, grammar_repr) | |
state.grammar_encoding.append(0xFFFF) | |
return state | |
except RuntimeError as err: | |
logger.warning("error parsing grammar:", err) | |
return ParseState() | |
def print_rule(file, grammar_encoding, index, symbol_id_names): | |
rule_id = grammar_encoding[index] | |
print(f"<{index}>{symbol_id_names[rule_id]} ::=", end=" ", file=file) | |
pos = index + 1 | |
while grammar_encoding[pos]: | |
if pos - 1 > index: | |
print("|", end=" ", file=file) | |
pos += 1 # sequence size, not needed here | |
while grammar_encoding[pos]: | |
if grammar_encoding[pos] == REF_RULE_MARKER: | |
ref_rule_id = grammar_encoding[pos + 1] | |
print( | |
f"<{pos}>{symbol_id_names[ref_rule_id]}", | |
end=" ", | |
file=file, | |
) | |
pos += 2 | |
else: | |
print("<{}>[".format(pos), end="", file=file) | |
num_chars = grammar_encoding[pos] | |
pos += 1 | |
for i in range(0, num_chars, 2): | |
print("{}-".format(chr(grammar_encoding[pos + i])), end="", file=file) | |
if i + 1 < num_chars: | |
print("{}".format(chr(grammar_encoding[pos + i + 1])), end="", file=file) | |
print("]", end=" ", file=file) | |
pos += num_chars | |
pos += 1 | |
print(file=file) | |
return pos + 1 | |
def print_grammar(file, state): | |
pos = 0 | |
symbol_id_names = {v: k for k, v in state.symbol_ids.items()} | |
print("Grammar Rules:", file=file) | |
while state.grammar_encoding[pos] != 0xFFFF: | |
pos = print_rule(file, state.grammar_encoding, pos, symbol_id_names) | |
pos = 0 | |
print("\nBinary representation:", file=file) | |
while state.grammar_encoding[pos] != 0xFFFF: | |
print(f"{state.grammar_encoding[pos]:04x}", end=" ", file=file) | |
pos += 1 | |
print("ffff\n") | |
################################### | |
# EBNF Grammar Parsing ends here # | |
################################### | |
class GrammarConstraint(ABC): | |
def __init__(self, grammar_str, start_rule_name, tokenizer): | |
self.tt = 0 | |
self.nt = 0 | |
state = parse_ebnf(grammar_str) | |
grammar_encoding = state.grammar_encoding | |
self.start_rule_id = state.symbol_ids.get(start_rule_name) | |
self.eos_token_id = tokenizer.eos_token_id | |
self.token_trie = TokenTrie(tokenizer) | |
self.tokenizer = tokenizer | |
self.grammar_encoding = grammar_encoding | |
pos = 0 | |
rules: Dict[int, int] = {} | |
while grammar_encoding[pos] != 0xFFFF: | |
rule_id = grammar_encoding[pos] | |
# Store the current position in the 'rules' list at the index corresponding to rule_id. | |
# This effectively maps each rule_id to its position in the grammar encoding. | |
rules[rule_id] = pos | |
pos += 1 | |
# Continue to the next rule in the encoding. | |
# The loop advances by the size indicated at the current position (grammar_encoding[pos]) | |
# plus one for the size field itself. | |
while grammar_encoding[pos]: | |
pos += 1 + grammar_encoding[pos] | |
# Now we're at the end of the rule, | |
# so advance to the next rule by skipping the 0, which means 'end of rule'. | |
pos += 1 | |
self.start_rule_pos = rules[self.start_rule_id] | |
self.rules_pos_dict: Dict[int, int] = rules | |
def init_stacks(self): | |
# suppose the start rule position is 0, then grammar_encoding[0] = rule_id | |
# grammar_encoding[1] = rule_size | |
# grammar_encoding[2] = rule_type | |
# this is why we need to add 2 to the start rule position | |
stack = [self.start_rule_pos + 2] | |
# convert to tuple for caching(immutable) | |
return self.advance_stack(tuple(stack)) | |
# For each stack, resolve rules to find the actual characters that are | |
# accepted by this stack (not the set of sub-rules). | |
# This is where the parsing happens. | |
# The parsing is a top-down, left-to-right, depth-first traversal of the | |
# grammar. | |
def advance_stack(self, stack): | |
stack = list(stack) | |
# If the stack is empty, we're done. Because no more tokens should be accepted. | |
if len(stack) == 0: | |
return [stack] | |
# Get the top of the stack. | |
pos = stack[-1] | |
# If the stack head is a terminal(literal), we can resolve it immediately. | |
# literal is marked with 2 in the grammar encoding. | |
if self.grammar_encoding[pos] > 1: | |
return [stack] | |
# The stack head is a nonterminal (a rule reference, 1 in the grammar encoding). | |
# Resolving this rule gives a set of one or more possible positions | |
# (e.g. two in `a ::= b | c`) | |
# We pop the current rule off the stack and, for each option, push: | |
# - the symbol following this symbol in the current rule; then | |
# - the first symbol of the resolved rule. | |
referenced_rule_id = self.grammar_encoding[pos + 1] | |
# subpos should points to the size of the subrule | |
subpos = self.rules_pos_dict[referenced_rule_id] + 1 | |
stacks: List[List[int]] = [] | |
# do depth-first search to find all possible rules and check the next terminal | |
# When this value is non-zero, it indicates that subpos is not yet at the end of the rule, so we can continue. | |
# here subpos is a pointer, and the value in the rule encoding can never be 0 except for the end of the rule. | |
while self.grammar_encoding[subpos]: | |
new_stack = stack[:-1] | |
if self.grammar_encoding[pos + 2]: | |
# check if there is a next symbol in the current rule, e.g. `a ::= b c | d` | |
# if yes, push the pos to rule_size to the stack | |
new_stack.append(pos + 2) | |
# if the type of the next symbol is not "empty", push the first symbol of the resolved rule to the stack | |
if self.grammar_encoding[subpos + 1]: | |
new_stack.append(subpos + 1) | |
stacks.extend(self.advance_stack(tuple(new_stack))) | |
# The increment subpos += self.grammar_encoding[subpos] + 1 | |
# moves subpos forward in the grammar encoding array to the next alternative in the current rule. | |
subpos += self.grammar_encoding[subpos] + 1 | |
return stacks | |
def accept_char(self, *args, **kwargs): | |
"""Process a byte according to the grammar rules.""" | |
raise NotImplementedError | |
def accept_token_id(self, *args, **kwargs): | |
"""Process a token according to the grammar rules.""" | |
raise NotImplementedError | |
def filter_vocab(self, *args, **kwargs): | |
raise NotImplementedError | |
class IncrementalGrammarConstraint(GrammarConstraint): | |
def __init__(self, grammar_str, start_rule_name, tokenizer): | |
super().__init__(grammar_str, start_rule_name, tokenizer) | |
def accept_char(self, byte, stacks): | |
new_stacks = [] | |
for stack in stacks: | |
# stack is empty | |
if not stack: | |
continue | |
pos = stack[-1] | |
num_chars = self.grammar_encoding[pos] | |
# to make pos point to the size of the char range rule | |
pos += 1 | |
found = False | |
for i in range(0, num_chars, 2): | |
if self.grammar_encoding[pos + i] <= byte and byte <= self.grammar_encoding[pos + i + 1]: | |
found = True | |
break | |
if not found: | |
continue | |
pos += num_chars | |
new_stack = stack[:-1] | |
if self.grammar_encoding[pos]: | |
new_stack.append(pos) | |
new_stacks.extend(self.advance_stack(tuple(new_stack))) | |
return new_stacks | |
def accept_string(self, string: str, stacks: List[List[int]]): | |
_bytes = bytes(string, "utf-8") | |
for byte in _bytes: | |
stacks = self.accept_char(byte, stacks) | |
return stacks | |
def accept_token_id(self, token_id: int, stacks: List[List[int]]): | |
if token_id == self.eos_token_id: | |
if stacks and all(len(stack) != 0 for stack in stacks): | |
raise Exception( | |
f"At least one of the stack should be empty when EOS is reached. However, " | |
f"the stacks are {stacks}" | |
) | |
return [] | |
for byte in self.token_trie.id2str(token_id): | |
stacks = self.accept_char(byte, stacks) | |
# check updated stacks | |
# TODO, I commented this out because it will fail when the stack is empty | |
# empty stack means the end of the grammar | |
# assert stacks != [] | |
return stacks | |
def accept_token_ids(self, token_ids: List[int], stacks: List[List[int]], as_string=True): | |
if as_string: | |
string = self.tokenizer.decode(token_ids) | |
stacks = self.accept_string(string, stacks) | |
else: | |
for token_id in token_ids: | |
stacks = self.accept_token_id(token_id, stacks) | |
return stacks | |
def batch_filter_vocab(self, batch_stacks, device): | |
batch_acceptance = [] | |
for stacks in batch_stacks: | |
batch_acceptance.append(self.filter_vocab(stacks, device)) | |
return torch.stack(batch_acceptance) | |
def filter_vocab(self, stacks, device): | |
if not stacks: # Check if stacks is empty | |
# Handle the empty case: for example, return a tensor of False | |
# The size of the tensor should match the size of your vocabulary | |
vocab_size = len(self.token_trie) | |
logger.debug(f"sum of acceptance: {0}") | |
return torch.zeros(vocab_size, dtype=torch.bool, device=device) | |
acceptance_matrix = torch.cat([self.token_acceptance_for_stack(tuple(stack), device) for stack in stacks]) | |
# Merge stacks: any True => True | |
acceptance = acceptance_matrix.reshape(len(stacks), -1).any(dim=0) | |
logger.debug(f"sum of acceptance: {acceptance.sum()}") | |
return acceptance | |
# For each sub-rule in the grammar, cache whether each byte is accepted. | |
def pos_char_acceptance(self, pos): | |
acceptance = [False] * 256 | |
num_chars = self.grammar_encoding[pos] | |
pos += 1 | |
for i in range(0, num_chars, 2): | |
start = self.grammar_encoding[pos + i] | |
end = self.grammar_encoding[pos + i + 1] | |
for j in range(start, end + 1): | |
acceptance[j] = True | |
return acceptance | |
# Probably this should be configurable. If the grammar has an exceedingly | |
# large number of states, the correct setting is a tradeoff between GPU | |
# RAM usage and recomputation time. | |
# | |
# The main variable that pushes usage up here is number of states in the | |
# grammar. | |
def token_acceptance_for_stack(self, stack, device): | |
st = time.time() | |
stack = list(stack) # needs to come in as a tuple for lru_cache | |
accepts = [False] * len(self.token_trie) | |
accepts[self.eos_token_id] = len(stack) == 0 | |
if len(stack) == 0: | |
logger.debug("empty stack") | |
def traverse_trie(trie, stacks): | |
for byte, next_trie in trie.items(): | |
if byte == LEAF: | |
token_id = next_trie | |
if token_id != self.eos_token_id: | |
accepts[token_id] = bool(stacks) | |
continue | |
new_stacks = [] | |
for stk in stacks: | |
if not stk: | |
continue | |
pos = stk[-1] | |
num_chars = self.grammar_encoding[pos] | |
if not self.pos_char_acceptance(pos)[byte]: | |
continue | |
pos += num_chars + 1 | |
new_stack = stk[:-1] | |
if self.grammar_encoding[pos]: | |
new_stack.append(pos) | |
new_stacks.extend(self.advance_stack(tuple(new_stack))) | |
if new_stacks: | |
traverse_trie(next_trie, new_stacks) | |
traverse_trie(self.token_trie.trie, [stack]) | |
et = time.time() - st | |
x = torch.tensor(accepts, dtype=torch.bool, device=device) | |
self.tt += et | |
self.nt += 1 | |
return x | |
class StaticGrammarConstraint(GrammarConstraint): | |
def __init__(self, grammar_str, start_rule_name, tokenizer): | |
super().__init__(grammar_str, start_rule_name, tokenizer) | |
def accept_char(self): | |
raise NotImplementedError | |
################# | |
# DATA STRUCTURES | |
################# | |
LEAF = -1 | |
class TokenTrie: | |
def __init__(self, tokenizer): | |
self.eos_token_id = tokenizer.eos_token_id | |
self.tokens = [] | |
self.trie = {} | |
self.load_tokens(tokenizer) | |
def id2str(self, token_id): | |
return self.tokens[token_id] | |
def __len__(self): | |
return len(self.tokens) | |
def load_tokens(self, tokenizer): | |
def replace_hex(match): | |
hex_value = match.group(1) | |
return chr(int(hex_value, 16)) | |
if "gpt2" in tokenizer.__class__.__name__.lower(): | |
special = tokenizer.additional_special_tokens_ids | |
# Here, the decoder does a string replace on a bunch of sequences | |
# like ' .' for '.'. This interferes with our assumptions, where a | |
# token should always have exactly one representation. | |
# Fortunately(?) text-generation-inference doesn't seem to run this | |
# cleanup, so we get extraneous spaces. So, in order to generate | |
# the right token set for TGI, we have to skip the space trimming. | |
# See: | |
# https://github.com/huggingface/transformers/blob/main/src/transformers/tokenization_utils_base.py#L3588-L3600 | |
def fmt_token(id): | |
if id in special: | |
return None | |
return bytes(tokenizer.decode([id], clean_up_tokenization_spaces=False), "utf-8") | |
elif "llama" in tokenizer.__class__.__name__.lower(): | |
def fmt_token(id): | |
token = tokenizer.convert_ids_to_tokens(id) | |
token = re.sub(r"<0x([0-9a-fA-F]{2})>", replace_hex, token) | |
token = token.replace("▁", " ") | |
return bytes(token, "utf-8") | |
else: | |
print("Warning: unrecognized tokenizer: using default token formatting") | |
def fmt_token(id): | |
token = tokenizer.convert_ids_to_tokens(id) | |
return bytes(token, "utf-8") | |
# note: vocab_size doesn't work here because there are also | |
# get_added_vocab() tokens | |
self.tokens = [fmt_token(i) for i in range(len(tokenizer.get_vocab()))] | |
for token_id, token_bytes in enumerate(self.tokens): | |
if token_bytes is not None: | |
self.insert_into_trie(self.trie, token_bytes, token_id) | |
def insert_into_trie(self, trie, token_bytes, token_id): | |
current = trie | |
for byte in token_bytes: | |
if byte not in current: | |
current[byte] = {} | |
current = current[byte] | |
current[LEAF] = token_id | |
def initialize_grammar(grammar_string): | |
return IncrementalGrammarConstraint(grammar_string.strip(), start_rule_name="root", tokenizer=shared.tokenizer) | |