QP_ANmixtao / modules /models.py
zhengr's picture
First version
19dc0f3
raw
history blame
16.6 kB
import gc
import logging
import os
import pprint
import re
import time
import traceback
from pathlib import Path
import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
from accelerate.utils import (
is_ccl_available,
is_npu_available,
is_xpu_available
)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BitsAndBytesConfig,
GPTQConfig
)
import modules.shared as shared
from modules import RoPE, sampler_hijack
from modules.logging_colors import logger
from modules.models_settings import get_model_metadata
from modules.relative_imports import RelativeImport
transformers.logging.set_verbosity_error()
local_rank = None
if shared.args.deepspeed:
import deepspeed
from transformers.deepspeed import (
HfDeepSpeedConfig,
is_deepspeed_zero3_enabled
)
from modules.deepspeed_parameters import generate_ds_config
# Distributed setup
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
if is_xpu_available() and is_ccl_available():
torch.xpu.set_device(local_rank)
deepspeed.init_distributed(backend="ccl")
elif is_npu_available():
torch.npu.set_device(local_rank)
deepspeed.init_distributed(dist_backend="hccl")
else:
torch.cuda.set_device(local_rank)
deepspeed.init_distributed()
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
sampler_hijack.hijack_samplers()
def load_model(model_name, loader=None):
logger.info(f"Loading \"{model_name}\"")
t0 = time.time()
shared.is_seq2seq = False
shared.model_name = model_name
load_func_map = {
'Transformers': huggingface_loader,
'AutoGPTQ': AutoGPTQ_loader,
'GPTQ-for-LLaMa': GPTQ_loader,
'llama.cpp': llamacpp_loader,
'llamacpp_HF': llamacpp_HF_loader,
'ExLlamav2': ExLlamav2_loader,
'ExLlamav2_HF': ExLlamav2_HF_loader,
'AutoAWQ': AutoAWQ_loader,
'QuIP#': QuipSharp_loader,
'HQQ': HQQ_loader,
}
metadata = get_model_metadata(model_name)
if loader is None:
if shared.args.loader is not None:
loader = shared.args.loader
else:
loader = metadata['loader']
if loader is None:
logger.error('The path to the model does not exist. Exiting.')
raise ValueError
shared.args.loader = loader
output = load_func_map[loader](model_name)
if type(output) is tuple:
model, tokenizer = output
else:
model = output
if model is None:
return None, None
else:
tokenizer = load_tokenizer(model_name, model)
shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings})
if loader.lower().startswith('exllama'):
shared.settings['truncation_length'] = shared.args.max_seq_len
elif loader in ['llama.cpp', 'llamacpp_HF']:
shared.settings['truncation_length'] = shared.args.n_ctx
logger.info(f"LOADER: \"{loader}\"")
logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}")
logger.info(f"INSTRUCTION TEMPLATE: \"{metadata['instruction_template']}\"")
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
def load_tokenizer(model_name, model):
tokenizer = None
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/")
if path_to_model.exists():
if shared.args.no_use_fast:
logger.info('Loading the tokenizer with use_fast=False.')
tokenizer = AutoTokenizer.from_pretrained(
path_to_model,
trust_remote_code=shared.args.trust_remote_code,
use_fast=not shared.args.no_use_fast
)
return tokenizer
def huggingface_loader(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
params = {
'low_cpu_mem_usage': True,
'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16,
}
if shared.args.trust_remote_code:
params['trust_remote_code'] = True
if shared.args.use_flash_attention_2:
params['use_flash_attention_2'] = True
if shared.args.force_safetensors:
params['force_safetensors'] = True
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
if 'chatglm' in model_name.lower():
LoaderClass = AutoModel
else:
if config.to_dict().get('is_encoder_decoder', False):
LoaderClass = AutoModelForSeq2SeqLM
shared.is_seq2seq = True
else:
LoaderClass = AutoModelForCausalLM
# Load the model without any special settings
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama, shared.args.disable_exllamav2]):
logger.info("TRANSFORMERS_PARAMS=")
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params)
print()
model = LoaderClass.from_pretrained(path_to_model, **params)
if not (hasattr(model, 'is_loaded_in_4bit') and model.is_loaded_in_4bit):
if torch.backends.mps.is_available():
device = torch.device('mps')
model = model.to(device)
elif is_xpu_available():
device = torch.device("xpu")
model = model.to(device)
elif is_npu_available():
device = torch.device("npu")
model = model.to(device)
else:
model = model.cuda()
# DeepSpeed ZeRO-3
elif shared.args.deepspeed:
model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype'], trust_remote_code=params.get('trust_remote_code'))
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
model.module.eval() # Inference
logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}')
# Load with quantization and/or offloading
else:
if not any((shared.args.cpu, torch.cuda.is_available(), is_xpu_available(), torch.backends.mps.is_available())):
logger.warning('torch.cuda.is_available() and is_xpu_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.')
shared.args.cpu = True
if shared.args.cpu:
params['torch_dtype'] = torch.float32
else:
params['device_map'] = 'auto'
if x := get_max_memory_dict():
params['max_memory'] = x
if shared.args.load_in_4bit:
# See https://github.com/huggingface/transformers/pull/23479/files
# and https://huggingface.co/blog/4bit-transformers-bitsandbytes
quantization_config_params = {
'load_in_4bit': True,
'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None,
'bnb_4bit_quant_type': shared.args.quant_type,
'bnb_4bit_use_double_quant': shared.args.use_double_quant,
'llm_int8_enable_fp32_cpu_offload': True
}
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params)
elif shared.args.load_in_8bit:
if any((shared.args.auto_devices, shared.args.gpu_memory)):
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
else:
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
if params.get('max_memory') is not None:
with init_empty_weights():
model = LoaderClass.from_config(config, trust_remote_code=params.get('trust_remote_code'))
model.tie_weights()
params['device_map'] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params.get('max_memory'),
no_split_module_classes=model._no_split_modules
)
if shared.args.disk:
params['offload_folder'] = shared.args.disk_cache_dir
if shared.args.disable_exllama or shared.args.disable_exllamav2:
try:
gptq_config = GPTQConfig(
bits=config.quantization_config.get('bits', 4),
disable_exllama=shared.args.disable_exllama,
disable_exllamav2=shared.args.disable_exllamav2,
)
params['quantization_config'] = gptq_config
logger.info(f'Loading with disable_exllama={shared.args.disable_exllama} and disable_exllamav2={shared.args.disable_exllamav2}.')
except:
exc = traceback.format_exc()
logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?')
print(exc)
if shared.args.compress_pos_emb > 1:
params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb}
elif shared.args.alpha_value > 1:
params['rope_scaling'] = {'type': 'dynamic', 'factor': RoPE.get_alpha_value(shared.args.alpha_value, shared.args.rope_freq_base)}
logger.info("TRANSFORMERS_PARAMS=")
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params)
print()
model = LoaderClass.from_pretrained(path_to_model, **params)
return model
def llamacpp_loader(model_name):
from modules.llamacpp_model import LlamaCppModel
path = Path(f'{shared.args.model_dir}/{model_name}')
if path.is_file():
model_file = path
else:
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0]
logger.info(f"llama.cpp weights detected: \"{model_file}\"")
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
return model, tokenizer
def llamacpp_HF_loader(model_name):
from modules.llamacpp_hf import LlamacppHF
path = Path(f'{shared.args.model_dir}/{model_name}')
# Check if a HF tokenizer is available for the model
if all((path / file).exists() for file in ['tokenizer_config.json']):
logger.info(f'Using tokenizer from: \"{path}\"')
else:
logger.error("Could not load the model because a tokenizer in Transformers format was not found.")
return None, None
model = LlamacppHF.from_pretrained(model_name)
return model
def AutoAWQ_loader(model_name):
from awq import AutoAWQForCausalLM
model_dir = Path(f'{shared.args.model_dir}/{model_name}')
model = AutoAWQForCausalLM.from_quantized(
quant_path=model_dir,
max_new_tokens=shared.args.max_seq_len,
trust_remote_code=shared.args.trust_remote_code,
fuse_layers=not shared.args.no_inject_fused_attention,
max_memory=get_max_memory_dict(),
batch_size=1,
safetensors=any(model_dir.glob('*.safetensors')),
)
return model
def QuipSharp_loader(model_name):
try:
with RelativeImport("repositories/quip-sharp"):
from lib.utils.unsafe_import import model_from_hf_path
except:
logger.error(
"\nQuIP# has not been found. It must be installed manually for now.\n"
"For instructions on how to do that, please consult:\n"
"https://github.com/oobabooga/text-generation-webui/pull/4803\n"
)
return None, None
# This fixes duplicate logging messages after the import above.
handlers = logging.getLogger().handlers
if len(handlers) > 1:
logging.getLogger().removeHandler(handlers[1])
model_dir = Path(f'{shared.args.model_dir}/{model_name}')
if not all((model_dir / file).exists() for file in ['tokenizer_config.json', 'special_tokens_map.json', 'tokenizer.model']):
logger.error(f"Could not load the model because the tokenizer files could not be found in the model folder. Please download the following files from the original (unquantized) model into {model_dir}: special_tokens_map.json, tokenizer.json, tokenizer.model, tokenizer_config.json.")
return None, None
model, model_str = model_from_hf_path(
model_dir,
use_cuda_graph=False,
use_flash_attn=not shared.args.no_flash_attn
)
return model
def GPTQ_loader(model_name):
# Monkey patch
if shared.args.monkey_patch:
logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.")
from modules.monkey_patch_gptq_lora import load_model_llama
model, _ = load_model_llama(model_name)
# No monkey patch
else:
import modules.GPTQ_loader
model = modules.GPTQ_loader.load_quantized(model_name)
return model
def AutoGPTQ_loader(model_name):
import modules.AutoGPTQ_loader
return modules.AutoGPTQ_loader.load_quantized(model_name)
def ExLlamav2_loader(model_name):
from modules.exllamav2 import Exllamav2Model
model, tokenizer = Exllamav2Model.from_pretrained(model_name)
return model, tokenizer
def ExLlamav2_HF_loader(model_name):
from modules.exllamav2_hf import Exllamav2HF
return Exllamav2HF.from_pretrained(model_name)
def HQQ_loader(model_name):
from hqq.core.quantize import HQQBackend, HQQLinear
from hqq.engine.hf import HQQModelForCausalLM
logger.info(f"Loading HQQ model with backend: \"{shared.args.hqq_backend}\"")
model_dir = Path(f'{shared.args.model_dir}/{model_name}')
model = HQQModelForCausalLM.from_quantized(str(model_dir))
HQQLinear.set_backend(getattr(HQQBackend, shared.args.hqq_backend))
return model
def get_max_memory_dict():
max_memory = {}
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
if shared.args.gpu_memory:
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
for i in range(len(memory_map)):
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory
# If --auto-devices is provided standalone, try to get a reasonable value
# for the maximum memory of device :0
elif shared.args.auto_devices:
if is_xpu_available():
total_mem = (torch.xpu.get_device_properties(0).total_memory / (1024 * 1024))
else:
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
suggestion = round((total_mem - 1000) / 1000) * 1000
if total_mem - suggestion < 800:
suggestion -= 1000
suggestion = int(round(suggestion / 1000))
logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.")
max_memory[0] = f'{suggestion}GiB'
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory
return max_memory if len(max_memory) > 0 else None
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
if is_xpu_available():
torch.xpu.empty_cache()
else:
torch.cuda.empty_cache()
def unload_model():
shared.model = shared.tokenizer = None
shared.model_name = 'None'
shared.lora_names = []
shared.model_dirty_from_training = False
clear_torch_cache()
def reload_model():
unload_model()
shared.model, shared.tokenizer = load_model(shared.model_name)